

痕量气体掩星探测高光谱成像光谱仪光学系统设计

孔相金 李博 李寒霜 王晓旭 顾国超 蒋雪

Optical system design of hyperspectral imaging spectrometer for trace gas occultation detection

KONG Xiang-jin, LI Bo, LI Han-shuang, WANG Xiao-xu, GU Guo-chao, JIANG Xue

引用本文:

孔相金,李博,李寒霜,王晓旭,顾国超,蒋雪.痕量气体掩星探测高光谱成像光谱仪光学系统设计[J].中国光学,2024,17(3): 661-673. doi: 10.37188/CO.2023-0153

KONG Xiang-jin, LI Bo, LI Han-shuang, WANG Xiao-xu, GU Guo-chao, JIANG Xue. Optical system design of hyperspectral imaging spectrometer for trace gas occultation detection[J]. *Chinese Optics*, 2024, 17(3): 661-673. doi: 10.37188/CO.2023-0153

在线阅读 View online: https://doi.org/10.37188/CO.2023-0153

您可能感兴趣的其他文章

Articles you may be interested in

光谱成像技术在海域目标探测中的应用

Application of spectral imaging technology in maritime target detection 中国光学(中英文). 2017, 10(6): 708 https://doi.org/10.3788/CO.20171006.0708

大视场高像质简单光学系统的光学-算法协同设计

Optical/algorithmic co-design of large-field high-quality simple optical system 中国光学(中英文). 2019, 12(5): 1090 https://doi.org/10.3788/CO.20191205.1090

大相对孔径紫外成像仪光学系统设计

Design of large aperture ultraviolet optical system for ultraviolet camera 中国光学(中英文). 2018, 11(2): 212 https://doi.org/10.3788/CO.20181102.0212

分孔径红外偏振成像仪光学系统设计

Design of decentered aperture-divided optical system of infrared polarization imager 中国光学(中英文). 2018, 11(1): 92 https://doi.org/10.3788/CO.20181101.0092

用于太阳光谱仪的光电探测系统线性度测试装置

Linearity testing device for the photoelectric detecting system of solar spectrometers 中国光学(中英文). 2019, 12(2): 294 https://doi.org/10.3788/CO.20191202.0294

激光位移传感器传感探头微小型光学系统设计

Design of micro-optical system for laser displacement sensor sensing probe 中国光学(中英文). 2018, 11(6): 1001 https://doi.org/10.3788/CO.20181106.1001 文章编号 2097-1842(2024)03-0661-13

痕量气体掩星探测高光谱成像光谱仪光学系统设计

孔相金1.2,李 博1*,李寒霜1,王晓旭1,顾国超1,蒋 雪1

(1. 中国科学院长春光学精密机械与物理研究所, 吉林长春 130033;

2. 中国科学院大学, 北京 100049)

摘要:痕量气体作为大气的重要成份,对地球的生态起着重要作用。为了实现宽波段、高光谱全天时连续测量,本文设计 了一款在掩星探测模式下工作的高光谱成像光谱仪。该系统为共狭缝的双通道结构,紫外-可见光通道采用单凹面光栅 结构、红外通道采用利特罗与浸没光栅结合结构,有效地减小了体积。利用软件对光学结构进行优化,优化结果表明:光 谱仪在 250~952 nm 波段范围内工作,其中紫外-可见光通道工作波段为 250~675 nm、光谱分辨率优于 1 nm、MTF 在奈 奎斯特频率为 20 lp/mm 处均高于 0.58、全视场各波长处 RMS 值均小于 21 µm; 红外通道工作波段为 756~952 nm、光谱 分辨率优于 0.2 nm、MTF 在奈奎斯特频率为 20 lp/mm 处均高于 0.76、全视场各波长处 RMS 值均小于 6 µm,均满足设 计要求。结果表明该高光谱成像光谱仪系统可以实现对痕量气体的掩星探测。

关 键 词:光学系统设计;掩星探测;痕量气体;高光谱成像光谱仪

中图分类号:TP394.1;TH691.9 文献标志码:A doi:10.37188/CO.2023-0153

Optical system design of hyperspectral imaging spectrometer for trace gas occultation detection

KONG Xiang-jin^{1,2}, LI Bo^{1*}, LI Han-shuang¹, WANG Xiao-xu¹, GU Guo-chao¹, JIANG Xue¹

 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
 University of Chinese Academy of Sciences, Beijing 100049, China) * Corresponding author, E-mail: libo0008429@163.com

Abstract: Trace gases, as important constituents of the atmosphere, play an important role in the ecology of the planet. In order to realize the requirements of wide-band, hyperspectral and all-weather continuous measurement, a hyperspectral imaging spectrometer operating in occultation detection mode is designed in this paper. The system is a dual-channel structure with a common slit, the UV-visible channel adopts a single concave grating, and the infrared channel adopts a structure combining Littrow and immersion grating, which effectively reduces the volume. The software is used to optimize the optical structure, and the optimization results show that the spectrometer operates in the range of 250–952 nm wavelengths, of which the UV-visible

收稿日期:2023-08-30;修订日期:2023-09-22

基金项目:国家重点研发计划(No.2022YFB3903202);国家自然科学基金(No.62205330)

Supported by National Key Research and Development Program of China (No.2022YFB3903202); National Natural Science Foundation of China (No. 62205330)

channel operates in the wavelength range of 250–675 nm, the spectral resolution is better than 1 nm, the MT-Fs are all higher than 0.58 at a Nyquist frequency of 20 lp/mm, and the RMS values at various wavelengths of the full-field-of-view are all less than 21 μ m; the infrared channel operates in the wavelength band of 756–952 nm, the spectral resolution is better than 0.2 nm, the MTF is higher than 0.76 at the Nyquist frequency of 20 lp/mm, and the RMS value at each wavelength in the whole field of view is less than 6 μ m, all of them meet the design requirements. It can be seen that the hyperspectral imaging spectrometer system can realize the occultation detection of trace gases.

Key words: optical system design; occultation detection; trace gas; hyperspectral imaging spectrometer

1引言

人类活动对地球生态系统的影响正在逐渐增加,导致大气各成分的含量随之变化,这种变化会越来越明显,甚至可能带来危险^[1]。如大气中的SO₂等酸性气体含量的增加使酸雨出现的更加频繁,对地表生命造成危害;臭氧等温室气体含量的增加会使全球气温升高,海平面升高^[2-3]。因此,对大气中痕量气体的探测有着重要意义。

成像光谱技术是目前应用非常广泛的技术, 其在地物分析、空间遥感、目标侦察等方面有 着广泛的应用前景,可以同时获得光谱和空间两 个维度的信息[4-6]。国内外已有多颗卫星通过成 像光谱仪对大气痕量气体含量及分布进行探 测。隶属于欧空局的 SCIAMACHY^[7] 载荷在 240~ 2400 nm 波段范围内光谱分辨率为 0.5 nm, 主要 工作模式为天底探测、临边探测及掩星探测,主 要目标为获取平流层臭氧含量数据,附带获得部 分痕量气体数据;美国的臭氧成像探测仪 OMPS^[8] 在 250~420 nm 波段内的光谱分辨率为 1~1.1 nm, 其采用天底探测和临边探测结合的探测方式,用 于收集紫外光谱数据,反演大气层臭氧等痕量气 体的垂直和水平分布情况。此外,还有工作模式 只是掩星模式的载荷,例如加拿大航天局 SCISAT 卫星上搭载的载荷 ACE-FTS ^[9] 在 750~4440 cm⁻¹ 波段范围内的光谱分辨率为 0.02 cm⁻¹, 用于气溶 胶、温度和大气痕量气体的研究;美国国家航 空航天局发射的 Aura 地球观测系统卫星上搭载 的臭氧监测仪 OMI^[10] 工作在 270~500 nm 波段, 光谱分辨率可达 0.45~1 nm, 主要用于监测大气中 的臭氧柱浓度和廓线、气溶胶,还有其它的痕量 气体。

搭载在 FY-3^[10-11] 卫星上的紫外臭氧总量探 测仪 TOU,由中国科学院国家空间科学中心研 制,是我国首个自主研制的全球臭氧总量监测仪 器,工作波段为 308~360 nm,光谱分辨率为 1 nm, 主要科学目标是探测全球臭氧的总体分布,为 气候和环境监测提供可靠的臭氧分布参数;我国 自主研发的 GF-5^[12]号卫星上搭载的大气环境 红外甚高分辨率探测仪 AIUS 工作波段为 2400~ 13 300 nm,采用掩星探测模式,光谱分辨率为 0.02 cm⁻¹,主要目标是将全球痕量气体分布量化。

目前国内痕量气体探测所用的成像光谱仪多 为天底、临边探测模式,对于掩星探测模式的光 谱仪研究较少。天底和临边探测模式对太阳光照 有着很强的依赖性,需要在较为明亮的区域进行 观测,对于阴影区域太阳的入射光强较弱,载荷所 接收的反射信号较弱,阴影区观测难,因此无法实 现全天时观测。

为解决上述问题,本文设计了一款双通道高 光谱成像光谱仪。其工作模式为掩星探测,可将 天狼星等较亮的恒星作为自然光源,采用大口径 望远镜充分收集恒星光照,保证微弱光信号的充 分接收。优化结果表明所设计成像光谱仪满足设 计要求。结合其他日照区工作载荷,可实现对痕 量气体的全天时测量。

2 成像系统技术指标

目前大多数光谱仪采用一个通道,对多波段 探测则需要多个光谱仪^[13]。该双通道成像光谱仪 的工作波段为 250~952 nm,其中,紫外-可见光通 道的工作波段为 250~675 nm,光谱分辨率优于 1 nm,主要对大气中平流层的臭氧、NO₂、SO₂等 痕量气体浓度的垂直分布廓线进行探测。由于痕 量气体臭氧的一个吸收波段 310~350 nm(哈金斯 波段)的测量结果对大气温度有很强的依赖性,故 可以通过对臭氧的探测实现对大气温度的探测。 大气中的微量气体水蒸气及其衍生物是臭氧层破 坏的主要因素,会对臭氧的探测精度有重要影响, 也需对氧气和水蒸气含量进行测量。

该成像光谱仪的红外通道光谱范围为 756~ 952 nm,光谱分辨率优于 0.2 nm,主要对大气中的 氧气(特征谱段 756~773 nm)、水蒸气及其衍生物 (特征波段 926~952 nm)进行探测。对于掩星探 测来说,以上光谱分辨率可以达到探测需求。

该成像系统采用的探测器为英国 E2V 公司 生产的电子倍增型 CCD,不仅解决了弱波段信 号的成像问题,还具有较大的动态范围和极高的 探测灵敏度^[14]。该探测器像元数为 1024×1024, 像元尺寸为 13 μm×13 μm,双通道空间维和光 谱维均采用 2 个像元合并,其探测原理图如图 1 所示。

该光谱仪计划轨道高度H为800km,它的掩 星探测距离L为

$$L = \sqrt{(R+H)^2 - R^2} , \qquad (1)$$

其中 R 为地球半径, 值为 6378.14 km, 由此可得 探测距离 L 为 3293.18 km。令 G_{sd} 为像元分辨 力, a 为等效像元尺寸, f 为系统焦距, 则由 $\frac{G_{sd}}{L} = \frac{a}{f}$ 可得:

$$G_{\rm sd} = \frac{La}{f} \quad , \tag{2}$$

其中a=26 µm, f=950 mm, 可得G_{sd}=90.13 m, 因此

垂直分辨率为180.26 m。该成像光谱仪的主要技术指标要求如表1所示。

表1	成像光谱仪的主要技术指标
----	--------------

Tab. 1	Main technical	indicators	of	imaging	spectro-
	meter				

参数	指标			
系统波段/nm	250~952			
视场/(°)	0.48			
焦距/mm	950			
F数	8.26			
光谱分辨率/nm	0.2~1			
狭缝长度/mm	7.96			
MTF	>0.58@20 lp/mm			
探测器像元数/pixel	1 024×1 024			
探测器像元尺寸/µm	13×13			

3 成像系统理论分析

红外通道采用浸没光栅,可以在保证光谱分 辨率的情况下,有效减小系统尺寸。浸没光栅是 一种在内部发生衍射的光栅,是衍射光栅与棱镜 (浸没介质)的结合。光线经过入射表面进入棱镜 内部,在棱镜内部发生衍射后再通过入射表面折 射出来。浸没光栅的角色散、光程差都与棱镜的 折射率 n 成正比,所以光谱的角色散和分辨率就 提高了 n 倍^[15]。由于该元件的特性,当光谱分辨 率固定时,采用浸没光栅可以有效的缩小仪器的 体积与重量,相反,当仪器的体积固定时,采用浸 没光栅可以有效提高光谱分辨率^[16]。

红外通道的两个波段 756~773 nm、926~ 952 nm 使用同一块浸没光栅,有

$$d(\sin\theta + \sin i) = m\lambda \quad , \tag{3}$$

式中,*d*为光栅间距,*θ*为衍射角,*i*为入射角,*m*为 衍射级次,λ为波长。

为了减小系统的体积,应使两波段衍射角度 相近,即

$$\sin\theta_1 + \sin i = \sin\theta_2 + \sin i \quad , \tag{4}$$

其中, θ₁为 756~773 nm 波段的中心波长 764.5 nm 的衍射角, θ₂为 926~952 nm 波段的中心波长 939 nm

的衍射角。采用同一块光栅,光栅间距 d 相同,故

$$m_1\lambda_1 = m_2\lambda_2 \quad , \tag{5}$$

即

$$\frac{m_1}{m_2} = \frac{\lambda_2}{\lambda_1} \quad . \tag{6}$$

为了避免级次重叠,选择最小的级次,756~ 773 nm 波段选择的级次*m*₁为 16 阶,926~952 nm 选择的级次*m*₂为 13 阶。将两波段的中心波长 *λ*₁和*λ*₂数值代入,可得*m*₁/*m*₂ = 16/13。

色散长度决定着光谱分辨率,是成像光谱仪 的重要设计指标。

$$\Delta_l = \frac{\Delta_\lambda \times k \times \sigma}{\delta_\lambda} \quad , \tag{7}$$

其中: $Δ_i$ 为色散长度, $Δ_\lambda$ 为波段长度, k为采样因 子, σ为合并后的像元尺寸, δ_λ 为光谱分辨率。

为了满足红外通道光谱分辨率优于 0.2 nm 的 要求,红外两个像面色散长度应分别达到 4.42 mm 和 6.76 mm。同理,为了满足紫外通道光谱分辨 率优于 1 nm 的要求,紫外-可见光通道色散长度 应达到 22.1 mm。

4 成像光学系统设计

4.1 望远系统设计

望远系统工作波段包含紫外波段,紫外光线 经过透射光学元件后能量损失较大,所以望远系 统应尽可能采用反射结构。本文中,其由两个反 射镜以及两块透镜构成。两个反射镜采用非球面 面型,有效矫正了像差以及畸变,透镜材料为熔融 石英,熔融石英具有较好的光谱特性^[14]。为了实 现光谱仪双通道的共狭缝设计,在主镜前添加一 个表面并设为光阑,实现入瞳分离。优化时,控制 系统焦距、入瞳直径以保证系统的F数稳定。控 制各视场主光线在像面上的入射角度,便于与后 续系统对接。

经过优化后,获得如图 2 所示的望远系统的 二维图、三维图。

掩星探测方式信号相对较弱,需要大口径的 望远系统对微弱信号进行收集,该望远系统主镜 口径为 300 mm,可实现对微弱信号收集。经过优 化后,望远系统的光学传递函数 MTF 曲线如 图 3(彩图见期刊电子版)所示, 红外通道在奈奎 斯特频率 20 lp/mm 处, MTF 值优于 0.8; 紫外-可 见光通道在奈奎斯特频率 20 lp/mm 处, MTF 值 优于 0.9, 双通道均接近衍射极限, 成像质量高。 望远系统点列图如图 4 所示, 双通道在 5 个视场 内 RMS 最大值为 2.58 μm, 小于合并像元后尺寸 的一半, 符合设计要求。

Fig. 2 Structure diagram of the telescopic system. (a) twodimensional view; (b) three-dimensional view

Fig. 3 MTF graph of the telescopic system

图 4 望远系统点列图

4.2 紫外-可见光通道系统设计

紫外-可见光通道的工作波段包含紫外波段, 为避免能量损失,通道只使用一个反射凹面光 栅。该通道具有光谱位置稳定^[12]、结构简单、便 于装调等优点。将狭缝长度设定为 7.96 mm、物 方数值孔径设定为 0.05,并将工作波长等参数输 入后获得初始结构。将孔径光阑放置在凹面光栅 上,凹面光栅采用超环面面型,以有效弥补像差。 由于紫外信号较弱,为避免可见光信号的干扰,利 用分光板将紫外波段(250~379 nm)和可见光波段 (380~675 nm)分别成像于像面1和像面2。将凹 面光栅的面型参数、光栅参数设为变量,给其余 表面添加偏心变量,控制凹面光栅的光栅间距、 焦距、色散长度等参数,优化完成后获得如图5 所示的成像系统二维图、三维图。

优化完成后,像面1的色散长度已达到8mm, 像面2的色散长度已达到17mm,经理论分析,紫 外-可见光通道的光谱分辨率优于1nm。全视场 各波长 MTF 曲线在奈奎斯特频率20lp/mm 处均 大于0.65,符合设计要求。在波长675nm、462.5nm、 250nm 处的 MTF 曲线如图6所示。

图 6 不同波长下紫外-可见光通道 MTF曲线图。(a) λ=675 nm; (b)λ=462.5 nm; (c)λ=250 nm

Fig. 6 MTF graph of UV-vis channel at the wavelengthes of (a) λ =675 nm; (b) λ =462.5 nm; (c) λ =250 nm

观察其点列图,最大 RMS 值为 18.4 μm,满 足设计要求。各视场各波长点列图 RMS 数值如 图 7 所示。

图 / 系外-可见尤通道只列图 Fig. 7 Spot diagram of UV-vis channel

4.3 红外通道系统设计

红外通道工作波段为 756~952 nm。为了能 与前置望远系统产生良好对接, 红外成像系统 的物方数值孔径设定为 0.05、狭缝长度设定为 7.96 nm,将上述参数输入系统,获得初始结构。 系统采用利特罗结构,光栅采用浸没光栅,有效 减小了红外通道系统的整体尺寸。将孔径光阑设 置在系统的光栅面上,光栅间距为 0.031,756~ 773 nm 波段使用浸没光栅的 16 阶、926~952 nm 波段使用浸没光栅的 13 阶。为避免两波段在像 面上发生混叠,利用分光板使两波段分别成像于 两个探测器上。

在优化过程中,将每块透镜的表面曲率半径、厚度及材料设为变量,再根据设计要求控制变量。为了满足光谱分辨率优于 0.2 nm 的要求,需要控制像面 3(756~773 nm 波段像面)的色散长度为 4.42 nm;控制像面 4(926~952 nm 波段像面)的色散长度为 6.76 nm。为了平衡像差以及色差,选择不同材料透镜共 4 块,分别为SF4、NSK15、NK5、NFK5,浸没光栅的材料选择HZF6。

经过优化后,获得红外通道系统二维图、三 维图,如图 8 所示。

图 8 红外通道结构图

Fig. 8 Structural diagram of infrared channel

优化完成后,获得红外通道全视场各波长的 MTF曲线。可见,在奈奎斯特频率 20 lp/mm 处, 各波长均优于 0.75 且接近衍射极限, 成像质量

图 9 红外通道不同波长下的 MTF 曲线图。(a) λ=952 nm; (b) λ=939 nm; (c) λ=926 nm; (d) λ=773 nm; (e) λ=764.5 nm; $(f)\lambda=756 \text{ nm}$

Fig. 9 MTF graph of infrared channel at the wavelengthes of (a) λ =952 nm; (b) λ =939 nm; (c) λ =926 nm; (d) λ =773 nm; (e) λ =764.5 nm; (f) λ =756 nm

较好,符合设计要求。在波长 952 nm、939 nm、 926 nm、773 nm、764.5 nm、756 nm 处的 MTF 曲 线如图 9(彩图见期刊电子版)所示。

(b)

(d)

(f)

由优化后获得的点列图可知,最大的 RMS 值为 4.02 μm,小于 2 个像元合并后像元尺寸的 1/2,

由此可判断成像质量较高,符合设计要求。各波 长处点列图如图 10(彩图见期刊电子版)所示。

图 10 红外通道点列图

Fig. 10 RMS image of infrared channel (λ =952, 939, 926, 773, 764.5, 756 nm)

4.4 整体光学系统设计

将望远系统与紫外-可见光通道系统、红外 通道系统对接,获得高光谱成像光谱仪结构如 图 11 所示。系统 4 个像面距离前一光学元件均 大于 9 mm,便于后续探测器的安装。

拼接后的光谱仪的紫外-可见光通道 MTF 曲 线在 20 lp/mm 奈特斯奎频率下全视场各波长处 均大于 0.58; 红外通道 MTF 曲线在 20 lp/mm 奈 特斯奎频率下全视场各波长处均大于 0.76。成像 效果较好,符合设计要求,各波长处 MTF 曲线如 图 12(彩图见期刊电子版)所示。 拼接后的光谱仪紫外-可见光通道的 RMS 最 大值为 21 μm; 红外通道的 RMS 最大值为 6 μm, 两通道均符合设计要求, 成像质量良好。全视场 各波长的点列图如图 13(彩图见期刊电子版)所示。

图 12 光谱仪 MTF 曲线图

对成像光谱仪的 3个中心波长(939 nm、 764.5 nm、462.5 nm)进行公差分析。通过测试光 学系统的公差灵敏度,确保光学系统具有一定的 工程应用价值。在系统中给定公差值后,得到 3个波长处的结果,如图 14(彩图见期刊电子版) 所示。可以看出:在波长值为 939 nm 时,整体系 统 80% 以上 MTF 值大于 0.32;当波长为 764.5 nm 时,整体系统 80% 以上的 MTF 值大于 0.52;当波 长为 462.5 nm 时,整体系统 80% 以上的 MTF 值 大于 0.3,满足系统实际应用要求。

Fig. 14 Tolerance analysis of the spectrometer (λ =939, 764.5, 462.5 nm)

5 结 论

本文设计了一款用于掩星探测的高光谱成像 光谱仪,以恒星为自然光源,结合其他日照区的载 荷,可实现对痕量气体的全天时、较高信号强度 测量。光谱仪采用双通道结构,紫外-可见光通道 只使用一块凹面反射光栅,结构简单。红外通道 采用利特罗自准直结构和浸没光栅,有效减小了 该通道的体积与尺寸。

最终结果表明:整个光谱仪系统 F 数为 8.26、 系统焦距为 950 mm、全视场为 0.48°、狭缝长度 为 7.96 mm。其中紫外-可见光通道工作波段为 250~675 nm、光谱分辨率优于 1 nm、在奈奎斯特 频率为 20 lm/mm 处, MTF 曲线数值均大于 0.58, 全视场各波长 RMS 最大值为 21 μm; 红外通道工 作波段为 756~952 nm、光谱分辨率优于 0.2 nm、

在奈奎斯特频率为 20 lm/mm 处, MTF 曲线数值 均大于 0.76, 且接近衍射极限, 全视场各波长 RMS 最大值为 6 μm。整体设计符合设计与应用 要求, 为痕量气体的掩星探测提供了一种高光谱 成像光谱仪结构。

参考文献:

- [1] YE X, YI X L, LIN CH, et al.. Instrument development: Chinese radiometric benchmark of reflected solar band based on space cryogenic absolute radiometer[J]. *Remote Sensing*, 2020, 12(17): 2856.
- [2] 刘明言, 石秀顶, 李天国, 等. 电化学分析方法检测重金属离子研究进展[J]. 应用化学, 2023, 40(4): 463-475.
 LIU M Y, SHI X D, LI T G, *et al.*. Research progress in detection of heavy metal ions by electrochemical analysis[J]. *Chinese Journal of Applied Chemistry*, 2023, 40(4): 463-475. (in Chinese).
- [3] THUILLIER G, ZHU P, SNOW M, *et al.*. Characteristics of solar-irradiance spectra from measurements, modeling, and theoretical approach[J]. *Light:Science & Applications*, 2022, 11(1): 79.
- [4] 朱嘉诚, 陆伟奇, 赵知诚, 等. 静止轨道中波红外成像光谱仪分光成像系统[J]. 光学学报, 2021, 41(11): 1122001.
 ZHU J CH, LU W Q, ZHAO Z CH, *et al.*. Spectroscopic imaging system in mid-wave infrared imaging spectrometer on geostationary orbit[J]. *Acta Optica Sinica*, 2021, 41(11): 1122001. (in Chinese).
- [5] FENG A W, ZHAO SH J, HAN J ZH, et al.. High spectral resolution compact Offner spectrometer based on the aberration-reduced convex holographic gratings recorded by spherical waves under Rowland circle mounting[J]. *Applied Optics*, 2022, 61(13): 3893-3900.
- [6] 谭奋利,曾晨欣,冯安伟,等.基于 Dyson 结构的新型快照式分光成像系统光学设计[J].光学学报,2022,42(4): 0422002.

TAN F L, ZENG CH X, FENG A W, *et al.*. Optical design of novel snapshot spectral imaging system based on Dyson structure [J]. *Acta Optica Sinica*, 2022, 42(4): 0422002. (in Chinese).

- [7] DILS B, BUCHWITZ M, REUTER M, et al.. The greenhouse gas climate change initiative (GHG-CCI): comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO₂ and CH₄ retrieval algorithm products with measurements from the TCCON[J]. *Atmospheric Measurement Techniques*, 2014, 7(6): 1723-1744.
- [8] REMUND Q P, NEWELL D, RODRIGUEZ J V, *et al.*. The Ozone Mapping and Profiler Suite (OMPS): on-orbit calibration design[J]. *Proceedings of SPIE*, 2004, 5652: 165-173.
- [9] SOUCY M A A, CHATEAUNEUF F, DEUTSCH C, *et al.*. ACE-FTS instrument detailed design[J]. *Proceedings of SPIE*, 2002, 4814: 70-81.
- [10] 钟美,皮波,佘勇,等.FY-3B TOU 与 Aura OMI 卫星臭氧总量产品的比对分析[J]. 气象研究与应用, 2021, 42(2): 29-34.

ZHONG M, PI B, SHE Y, *et al.*. Comparative analysis of total ozone products between FY -3B TOU and Aura OMI satellite[J]. *Journal of Meteorological Research and Application*, 2021, 42(2): 29-34. (in Chinese).

- [11] 邵春沅, 顾明剑, 漆成莉, 等. 风云三号 D 星红外高光谱大气探测仪零光程差检测[J]. 光学 精密工程, 2020, 28(12): 2573-2580.
 SHAO CH Y, GU M J, QI CH L, *et al.*. Detection of zero path difference position for FY-3D hyper-spectral in frared atmospheric sounder[J]. *Optics and Precision Engineering*, 2020, 28(12): 2573-2580. (in Chinese).
- [12] 曹西凤, 李小英, 罗琪, 等. 星载红外高光谱传感器温度廓线反演综述[J]. 遥感学报, 2021, 25(2): 577-598.
 CAO X F, LI X Y, LUO Q, *et al.*. Review of temperature profile inversion of satellite-borne infrared hyperspectral sensors[J]. *National Remote Sensing Bulletin*, 2021, 25(2): 577-598. (in Chinese).
- [13] 张璐,李博,李寒霜,等.超光谱分辨率紫外双通道共光路成像光谱仪设计[J].中国光学(中英文),2022,15(5): 1029-1037.

ZHANG L, LI B, LI H SH, *et al.*. Hyperspectral resolution ultraviolet dual channel common optical path imaging spectrometer[J]. *Chinese Optics*, 2022, 15(5): 1029-1037. (in Chinese).

[14] 李寒霜, 李博, 李昊晨, 等. 基于一种透镜材料的宽谱段紫外成像仪光学设计[J]. 中国光学, 2022, 15(1): 65-71. LI H SH, LI B, LI H CH, *et al.*. Optical design of a wide-spectrum ultraviolet imager based on a single material[J]. Chinese Optics, 2022, 15(1): 65-71. (in Chinese).

- [15] SZUMSKI R, WALKER D D. The immersed echelle-I. Basic properties [J]. Monthly Notices of the Royal Astronomical Society, 1999, 302(1): 139-144.
- [16] CU-NGUYEN P H, GREWE A, FEBER P, et al.. An imaging spectrometer employing tunable hyperchromatic microlenses[J]. Light: Science & Applications, 2016, 5(4): e16058.

作者简介:

李博(1981—),男,吉林梨树人,博士,研究员,2011年于中国科学院大学获得博士学位,主要从 事高光谱遥感总体设计方面的研究。E-mail: libo0008429@163.com