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压电定位系统建模及滑模逆补偿控制 
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摘要：为了提高压电定位系统（Piezo-positioning system）的控制性能，对迟滞特性产生的影响及其补偿控制方法进行了研

究。利用 Hammerstein 模型表征压电陶瓷定位器的动态迟滞非线性特性，分别以 Prandtl-Ishlinskii（P-I）模型和 Hankel 矩阵

系统辨识法求得的模型表示 Hammerstein 模型的静态非线性部分和动态线性部分。此模型对于 200 Hz 以内的典型输入频率

具有较好的泛化能力。提出了基于 P-I 逆模型与积分增广的滑模逆补偿跟踪控制策略，实验结果表明，相较于 PID 逆补偿控

制和无逆补偿的滑模控制，滑模逆补偿控制具有更加理想的阶跃响应，无超调且调节时间仅为 6.2 ms，在频域内系统闭环跟

踪带宽达到 119.9 Hz，且扰动抑制带宽达到 86.2 Hz。所提控制策略实现了迟滞非线性的有效补偿，提高了压电定位系统的跟
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踪精度与抗扰性能。 

关键词：压电定位系统；迟滞非线性；Hammerstein 模型；P-I 模型；系统辨识；滑模控制 

 

1 Introduction 
Piezoelectric ceramic materials offer several 

advantages, including compact size, high precision, and 

rapid response times. These materials are ideally suited 

for use in microprocessing technology, precision flow 

control, and accurate positioning systems. They have 

been extensively employed across various sectors such 

as aerospace, medical, energy, and defense[1]. 

Nonetheless, piezoelectric ceramics demonstrate 

hysteresis in their input-output relationship, which can 

compromise the control accuracy, degrade system 

stability, and potentially induce system oscillations, 

thereby hindering further advancements in these 

materials. Consequently, the research into modeling 

hysteresis in nonlinear systems and the development of 

high-performance controllers are of paramount 

importance. 

In terms of hysteresis nonlinear modeling, there are 

currently three main types of hysteresis nonlinear models: 

1) Mechanism-based physical models such as the Duhem 

model[2], the Maxwell model[3], and the Jiles-Atherton 

model[4]; 2) Phenomenon-based mathematical models 

such as the Prandtl-Ishlinskii model[5], the Krasnoselskii-

Pokrovskii model[6], and the Preisach model[7]; 3) 

Intelligent computing models like support vector 

machines[8], neural networks[9], and fuzzy methods[10]. 

Reference [11] solved the nonlinear parameters of the 

electromechanical model for piezoelectric actuators 

based on the Maxwell physical model, providing a 

nonlinear model for the actuator. However, this requires 

in-depth research into complex physical mechanisms 

and parameters with clear physical significance, making 

this approach less versatile. Reference [12] employed the 

Duhem model to establish the hysteresis model for 

piezoelectric actuators, achieving a model that could 

accurately describe the relationship between input 

voltage and output displacement. The Duhem model has 

a clear functional expression, which makes it more 

convenient than reference [11]. Reference [13] improved 

the traditional Duhem model by dividing it into two half 

loops for separate modeling and used spline interpolation 

and neural network methods for model parameter 

identification, yielding a more precise piezoelectric 

actuator hysteresis model. However, it involves many 

parameters, making the identification and computation 

process more complex. Reference [14] derived a 

generalized nonlinear Preisach model applicable to 

piezoelectric actuators based on the nonlinear Preisach 

model, which enhances generalizability through 

phenomenological mathematical modeling. Reference 

[15] identified the functional relationship between 

hysteresis elements and frequency for the model, 

establishing a frequency-dependent Prandtl-Ishlinskii 

(P-I) model. This model overcomes the disadvantage of 

the Preisach model lacking an analytical inverse, 

simplifying computation, but the rate-dependent model 

requires input frequency determination in advance. 

In the control of systems with hysteresis 

nonlinearity, there are primarily two methods of 

hysteresis compensation: inverse compensation and 

closed-loop control. The inverse compensation approach 

involves mathematically constructing a hysteresis model 

and its inverse model. By incorporating the inverse 

model in series before the system, it decouples the 

hysteresis system to eliminate the effects of hysteresis[16]. 

Inverse compensation falls under open-loop control. To 

suppress various disturbances present in the system, 

closed-loop feedback (such as PID feedback composite 

control[17], internal model control[18], etc.) can be added 

on top of inverse compensation. Closed-loop control 

does not require inverse compensation; instead, it 

involves considering the hysteresis nonlinearity directly 

during the design process of the controller[19]. This direct 

control method increases the burden on the closed-loop 

control system to suppress disturbances and the design 

of nonlinear control methods is complex and difficult to 

implement. Currently, the controller design is only 

possible for some nonlinear systems with hysteresis 

characteristics, presenting certain limitations. 

Sliding mode control is a variable structure control 

method that can design sliding modes independent of 

external disturbances and the controlled object. As a 
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result, sliding mode controllers can effectively suppress 

various disturbances and the impact of model 

uncertainties. This control method features a simple and 

clear design approach and is easy to implement, making 

it widely used to solve control problems in complex 

nonlinear systems. Therefore, sliding mode control 

strategies can be used to implement tracking control in 

piezo-positioning systems. The control performance of 

sliding mode control is closely related to the accuracy of 

the identification model, and precise tracking of the 

control system requires an accurate system model. 

This study examines a piezo-positioning actuator 

and introduces a Hammerstein model adept at describing 

dynamic hysteresis. The static nonlinear part of this 

model is characterized by a P-I model, and the dynamic 

linear part is derived through system identification via 

the Hankel matrix method. This model is 

phenomenological, offering a straightforward and 

practical modeling technique that does not necessitate 

the prior determination of input frequency. 

Based on the establishment of the model, this paper 

first implements the P-I inverse model for serial 

compensation of the hysteresis characteristics of the 

piezo-positioning actuator. Then, using approximation 

methods and notch filter, the dynamic linear part of the 

Hammerstein model is tuned to facilitate controller 

design. Considering that the hysteresis nonlinearity is 

difficult to fully counteract, a sliding mode controller is 

designed to suppress the residual hysteresis and external 

disturbances. To enhance the tracking performance of the 

system, an integral augmentation method is used in the 

sliding mode control. Finally, real-time control 

experiments are conducted, and the results show that the 

proposed control strategy improves the control precision 

and stability of the piezo-positioning system, and 

exhibits strong adaptability to different input signals. 

2 Modeling of Piezo-positioning System 
2.1 Hysteresis Characteristic 

Hysteresis characteristics represent intrinsic 

nonlinear properties of piezoelectric ceramic materials, 

significantly affecting the positioning accuracy of piezo-

positioning actuators in precision applications. These 

characteristics manifest as different displacement values 

when the same excitation voltage is applied to a piezo-

positioning actuator during voltage ascent and descent. 

The hysteresis characteristics of piezoelectric 

ceramics are categorized into static and dynamic 

hysteresis nonlinearities. Static hysteresis nonlinearity 

predominantly exhibits memory effects and multi-valued 

mapping properties, implying that the output of 

piezoelectric ceramics at any given time is influenced not 

only by the current input but also by previous inputs. 

Additionally, a single input can correspond to multiple 

outputs, as shown in Fig.1(a). Dynamic hysteresis 

nonlinearity, primarily characterized by its frequency-

dependent properties, demonstrates minimal variations 

in nonlinearity at low input frequencies, as shown in 

Fig.1(b). 

 
(a) Static hysteresis character-  (b) Dynamic hysteresis character- 

istic curve                  istic curve 
Fig.1 Hysteresis characteristic curve 

2.2 Static Nonlinear Modeling Based on P-I Model 

The P-I model belongs to a phenomenological 

hysteresis model that primarily employs a weighted 

superposition of finite linear Play operators or linear 

Stop operators to model hysteresis nonlinearity. This 

paper establishes a P-I model using the Play operator, 

thereby simulating the system’s hysteresis characteristics 

effectively. 

The Play operator is defined as: 

 
  

  
( ) ( ), ,

max ( ) ,min ( ) , ,

i

i

y t L x t y t r

x t r x t r y t

 

   
 (1) 

where: t0≤…ti≤t≤ti+1…≤tm; x(t) is the input signal; r 

is the threshold of the Play operator. 

The initial conditions for the Play operator are: 

 
    
    

0 0

0 0

,0,

max ,min ,0 .

y t L x t r

x t r x t r

 

   
 (2) 

Fig.2 illustrates the relationship between the input 

signal x and the output signal y of the Play operator, 

manifested as a parallelogram structure. 
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Fig.2 Play operator 

Upon the weighted superposition of various play 

operators, the P-I model with hysteresis characteristics is 

obtained, and its output formula is as follows: 
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 (3) 

where: rj denotes the threshold of the j-th Play operator, 

satisfying rj≥0; ωj represents the weight of the j-th Play 

operator; and n signifies the number of weighted 

superpositions. 

For the P-I model, the weighting coefficients and 

threshold coefficients can be identified from the 

experimental data of the system's input and output. By 

selecting appropriate weighting coefficients and 

threshold coefficients, the P-I model can describe the 

actual hysteresis characteristic curve of piezoelectric 

ceramics. 

It is important to note that the P-I model belongs to 

the category of static nonlinear models, while the actual 

hysteresis nonlinearity of the piezo-positioning actuator 

is frequency-dependent. Therefore, for the practical 

piezo-positioning system, it is essential to fully consider 

the variations in input frequency. It is necessary to 

establish a dynamic hysteresis model that is related to the 

input signal frequency on the basis of the static nonlinear 

model. 

2.3 Dynamic Modeling Based on Hankel Matrix 
Identification Method 

To establish a dynamic hysteresis model for the 

piezo-positioning system, this paper adopts the structure 

of the Hammerstein model to model the piezo-

positioning system, connecting the static nonlinear 

model with the dynamic linear model in series. The 

structure of the Hammerstein model is shown in Fig.3. 

Here, u(t) represents the excitation voltage, and y(t) 

represents the generated displacement signal. 

Static nonlinear
model

Dynamic linear
model

u(t) y(t)

 
Fig.3 Hammerstein model structure 

For the Hammerstein model of the piezo-

positioning system, the static nonlinear part of the model 

is described by a P-I model, while the dynamic linear 

part is described by the system model obtained through 

the Hankel matrix system identification method. 

The fundamental principle of system identification 

method is to utilize real input-output data of the system 

to obtain an equivalent model of the identified system[20]. 

In this paper, the dynamic linear part of the piezo-

positioning system's Hammerstein model is solved using 

the Hankel matrix constructed from the system's impulse 

response sequence, resulting in a more accurate model. 

The identification theory is as follows. 

Given the input-output data of the system, the 

autocorrelation sequence and cross-correlation sequence 

are obtained as Ruu and Ryu respectively, defined as: 

 

1

1

1
( ) ( ) ( )

,
1

( ) ( ) ( )

N

uu
i k
N

yu
i k

R kt u it u it kt
N

R kt y it u it kt
N









 


  





 (4) 

where, k = 0, 1, 2, ... , N-1, N is the number of input 

sequences in one period, u represents the input data, and 

y represents the output data. 

The state equation of a discrete system is given by: 

 
(( 1) ) ( ) ( )

.
( ) ( ) ( )

h h

h h

x k t A x kt B u kt

y kt C x kt D u kt

  


 
 (5) 

If the impulse response of the discrete linear system 

is denoted as α(kt), where k = 0, 1, 2, ... , then the relation 

between the correlation function and the impulse 

response is: 

 
1

( ) ( ) ( ).yu uu
j

R Nt jt R Nt jt




   (6) 

The Hankel matrix H is constructed from the 

impulse response as: 

 

( ) (2 ) ( )
(2 ) (3 ) (( 1) )

.

( ) (( 1) ) ((2 1) )

t t nt
t t n t

H

nt n t n t

  
  

  

 
   
 

   




   


 (7) 

The relationship between the Hankel matrix 

obtained from the system's impulse response and the 

state-space equation is: 
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 (8) 

The singular values of the Hankel matrix can 

indicate the importance of each mode of the system, 

thereby allowing the selection of the system's order 

based on these singular values. By arranging the singular 

values in descending order, the system order can be 

determined based on the locations of significant changes 

in the singular values. 

Therefore, singular value decomposition of the 

Hankel matrix is performed, and further decomposition 

of the results yields: 

 

 
    

1

1 2 1 2 1 2

1 1 1 2 2 2 1 1 1

,

,

T
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T

T T T

H Udiag V
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 (9) 

where, σ1 ··· σn are the singular values of the Hankel 

matrix, with σi > 0, U1 = [u1···ur], Σ1 = diag{σ1, ···, σr}, 

and V1 = [v1···vr]. 

In accordance with formula (8), the matrices Ch and 

Bh can be selected as follows: 
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1 1
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 (10) 

Furthermore, a new Hankel matrix H1 can be 

constructed based on the impulse response： 
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(11) 

By decomposing and representing the matrix Ah as: 

 1 1
1 1 1 1 1( ) ( ) .T

hA U H V     (12) 

Usually, in engineering systems, it is assumed that 

Dh = 0. By following the aforementioned steps, a 

mathematical model based on Hankel matrix 

identification method can be obtained. With the matrices 

Ah, Bh, Ch, and Dh calculated, the transfer function can be 

determined, establishing the mathematical model of the 

system and obtaining the dynamic linear part of the 

piezo-positioning system's Hammerstein model. 

3 Model Identification and Testing 
3.1 Introduction of Experimental Platform 

In accordance with the characteristics of the piezo-

positioning system, an experimental platform as depicted 

in Fig.4 was set up. The entire experimental platform 

comprises a piezo-positioning actuator, an AD 

conversion module, a DA conversion module, a dSPACE 

simulation platform, a system controller, and an upper 

computer. 

dSPACE

AD/DA

Computer

Piezo-positioning 
actuator

Signal monitor & 
Voltage amplifier

 
Fig.4 Experimental platform of piezo-positioning system 

3.2 Parameter Identification 

As deduced from the previous description, when a 

low-frequency voltage signal is applied to the piezo-

positioning actuator, the output hysteresis curve changes 

very minimally, making it approximate to a static 

hysteresis system. Therefore, in this study, the static non-

linear part of the Hammerstein model is identified at a 

frequency of 1 Hz, namely the P-I model. The accuracy 

of the P-I model is closely related to the number of Play 

operators. To balance the model accuracy and 

computational speed, 20 Play operators were chosen in 

the experiment to fit the static hysteresis curve. The 

fitting results of the threshold coefficient r and the 

weight coefficient ω are as follows: 

 
 
0 0.15 0.30 ... 2.85

.
0.5597 0.1374 0.0180 ... 0.0058

T

T

r



 


 
(13) 

The model accuracy is represented by the relative 

error (RE) and the root mean square error (RMSE), 

defined as: 

 

2

1

2

1

ˆ( ( ) ( ))
,
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  (15) 
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where ˆ( )y i  is the model output and ( )y i  is the actual 

system output. 
When the input sinusoidal signal has a frequency of 

1 Hz, the hysteresis curve output by the P-I model 

matches the hysteresis curve measured from the piezo-

positioning system, as shown in Fig.5. The modeling 

errors, RMSE and RE, are 0.0051 μm and 0.0034 

respectively, indicating excellent modeling results for 

the static nonlinear part. 

 
Fig.5 Model and measured hysteresis curves 

Then, proceed with the identification of the 

dynamic linear part of the Hammerstein model. Once the 

P-I model is obtained, its inverse model can be calculated 

(the method for solving the inverse model is detailed in 

Section 4.1), then apply the derived P-I inverse model to 

the system's feedforward channel, and further identify 

the entire system using the Hankel matrix system 

identification method, thereby obtaining the 

mathematical model of the dynamic linear part. 

 
Fig.6 Input and output data of piezo-positioning system 

When collecting input-output data of the system, 

the input voltage signal is a pseudo-random signal with 

an amplitude of 5 V and a length of 14 bytes. Based on 

the input-output data, the system model is identified. The 

input-output data obtained from the experiment is shown 

in Fig.6. 

Obtain the system's impulse response based on the 

input-output data of the system, then construct a Hankel 

matrix based on the impulse response, and perform its 

singular value decomposition. The resulting singular 

value distribution is shown in Fig.7. 

 
Fig.7 Singular value distribution 

Upon observing Fig.7, it is evident that there is a 

significant jump between the first 6 data points, and from 

the 7th data point onwards, the singular values almost 

approach zero. After repeated experimental comparisons, 

the optimal choice for the system order is determined to 

be 6th order. Based on the determined system order and 

the steps outlined earlier for Hankel matrix identification, 

the dynamic linear part transfer function identified for 

the system of 6th order is as follows: 
4 2 6

2 6

2 4 8

2 6

3.8608( 3.03 10 )( 213 3.24 10 )

( 2001)( 628.4)( 1884 3.489 10 )

( 1.383 10 1.141 10 )

( 138.8 9.957 10 )

( )

.

s s s

s
G

s s s

s s

s s

s
    

    

   
  





(16) 

3.3 Model Validation 

 
Fig.8 Frequency response comparison diagram 

Firstly, the accuracy of the identified model is 

verified in the frequency domain. The comparison graph 

of the numerical solution obtained by the impulse 

response method with the frequency response of the 

identified system, as shown in Fig.8, reveals a good 

fitting effect before the frequency of 1000 Hz. This 

validates the accuracy of the identification results 
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obtained by the Hankel matrix system identification 

method. 

Further validating the accuracy of the model by 

inputting specific frequency sinusoidal signals ranging 

from 1 to 200 Hz into both the actual system and the 

identified system, and examining the model in the time 

domain. Tab.1 shows the errors between the output of the 

Hammerstein model and the actual output of the piezo-

positioning system. By observing the data in the table, it 

can be noticed that the error between the model output 

and the system output is very small, thus further 

confirming the effectiveness of the model constructed. 

Tab.1 Model testing errors at different frequencies 

Frequency (Hz) RMSE (μm) RE 
1 0.1835 0.0121 

10 0.3141 0.0214 
30 0.3538 0.0244 
50 0.3106 0.0219 
70 0.2557 0.0185 
100 0.2289 0.0173 
130 0.2572 0.0201 
160 0.3717 0.0297 
200 0.4345 0.0365 

4 Controller Design 

4.1 Feedforward Control Based on P-I Inverse 
Model 

To mitigate the impact of the hysteresis 

characteristic of the piezo-positioning actuator, a 

feedforward control approach can be employed. In this 

paper, the inverse model of the established P-I nonlinear 

model is derived, and this inverse model is used as a 

feedforward controller in series with the piezo-

positioning actuator to compensate for the nonlinear 

error caused by the hysteresis characteristic. The 

structure of the feedforward compensation is illustrated 

in Fig.9. Here, u represents the input signal, x denotes the 

output of the feedforward controller, and y signifies the 

output signal. 

P-I inverse
model

Piezo-Positioning
actuator

u x y

 
Fig.9 P-I inverse model feed-forward control block diagram 

The P-I model itself possesses the characteristic of 

analytic inverse. The inverse model of P-I, when 

connected in series with the piezo-positioning system 

model, can be constructed into a pseudo-linear 

functional relationship, thereby presenting a linearized 

relationship between the input and output of the entire 

system. The P-I inverse model also falls under the 

category of nonlinear models, with its parameters 

derivable through mathematical calculations based on 

the parameters of the P-I model. The organizational 

structure of the P-I inverse model remains a combination 

of a finite number of hysteresis operators and 

corresponding weight coefficients. Its expression is as 

follows: 

 

  

1

( )  max ( ) ,

min ( ) , ,

n

i i
i

i i

u t y t r

y t r y t
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in the expression: 
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1
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i
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j
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    (20) 

where ωi' and ri' represent the weight coefficients and 

threshold coefficients of the P-I inverse model. 

The feedforward control structure obtained from 

the P-I inverse model belongs to open-loop control, with 

poor disturbance rejection capability and stability. In 

order to enhance the reliability of practical engineering 

applications, and considering the presence of external 

disturbances, a control method combining feedforward 

control with sliding mode closed-loop control will be 

further employed. 

4.2 Model Performance Regulation 

The dynamic linear part transfer function of the 

piezo-positioning system model is depicted as in 

equation (16), revealing the presence of unstable zeros in 

the right half-plane, indicating that the identified 

function is non-minimum phase. Designing a controller 

for non-minimum phase systems is notably challenging, 

particularly as the unstable zeros of this transfer function 

are significantly far from the imaginary axis. Therefore, 

this study employs an approximation approach by 

directly eliminating the unstable zeros while ensuring 

minimal alteration in system characteristics. By 

approximating the unstable zero in equation (16) as s 

approaching 0, the resulting transfer function becomes 

minimum phase: 
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(21) 

proceed with the subsequent design based on this. 

From Fig.8, it can be observed that the system's 

frequency response curve exhibits prominent peak and 

valley. These can be mitigated by employing a notch 

filter for bandwidth adjustment, effectively eliminating 

the peak and valley in the high-frequency range, 

resulting in a smoother overall curve and thus enhancing 

the system's bandwidth. The principle behind the notch 

filter devised in this study is based on the positions of the 

zeros and poles in the frequency response plot (at 288 Hz 

and 502 Hz), allowing for the direct cancellation of the 

system's zeros and poles, thereby optimizing the model. 

The designed notch filter, denoted as Gf, is as follows: 

 
2 6

2 6

3.24( 138.8 9.957 10 )
( ) .

9.957( 213 3.24 10 )f

s s
G s

s s

  


  
 (22) 

The transfer function of the system after 

performance adjustment by cascading the notch filter 

with the system is: 
8 4

2 6

1.433 10 ( 3.03 10 )
( ) .

( 2001)( 628.4)( 1884 3.489 10 )nf

s
G s

s s s s

  


    
(23) 

 
Fig.10 Model performance adjustment effect 

The performance adjustment effect of the model 

after incorporating the notch filter is illustrated in Fig.10. 

The notch filter not only optimizes the model but also 

achieves a reduction in the order of the piezo-positioning 

system's linear model, from the original 6th order to the 

4th order, thereby facilitating the subsequent design of 

sliding mode controllers. Equation (23) is transformed 

into state space representation as: 

 

 

6 10 12

8 12

4513 9.7 10 1.154 10 4.387 10

1 0 0 0
,

0 1 0 0

0 0 1 0

1 0 0 0 ,

0 0 1.433 10 4.343 10 ,

0 .

T

A

B

C

D

       
 
 
 
 
  



    


(24) 

4.3 Sliding Mode Controller Design 

After the implementation of feedforward control, 

the hysteresis nonlinearity of the piezo-positioning 

actuator is effectively counteracted. However, two issues 

persist in this hysteresis compensation strategy: firstly, it 

is challenging to achieve complete compensation of the 

hysteresis nonlinearity in practice, and secondly, the 

piezo-positioning actuator itself exhibits parameter 

uncertainties and is susceptible to disturbances. 

Therefore, this paper proposes a control strategy based 

on P-I inverse compensation. By utilizing feedforward 

control of the inverse model to compensate for the 

hysteresis characteristics, and following model 

performance adjustment, a sliding mode controller is 

designed to suppress the remaining hysteresis 

characteristics, existing disturbances, and model 

uncertainties. As shown in Fig.11, the sliding mode 

inverse compensation control block diagram is depicted. 

SMC
Notch 
filter

G
P-I inverse 

model
P-I 

model-
r e u     uc w y

 
Fig.11 Block diagram of sliding mode control based on inverse 

compensation for piezo-positioning system 

The state equation of the piezo-positioning actuator 

after feedforward compensation and performance 

adjustment is as follows: 

 ,
x Ax Bu

y Cx

 







 (25) 

where A is the n×n matrix, B is the n×m matrix, and C is 

the k×n matrix. 

For the linear dynamic model of the system 

obtained through system identification and model 

performance adjustment, the state variables do not have 

actual physical significance. In other words, if the input 

voltage signal has actual physical meaning, it is not 

possible to directly control the state variables to achieve 
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tracking performance. Therefore, according to the 

internal model principle, an integral component can be 

introduced to construct an integral augmented system for 

achieving tracking performance. 

The system's output y(t) is required to track the 

reference input r(t), with the error signal e(t) given by: 

 ( ) ( ) ( ).e t y t r t   (26) 

Introducing the integral of the error signal, denoted 

as p(t): 

  
0 0

( ) ( ) ( ) ( ) .
t t

p t e d y r d         (27) 

Taking the derivative of the above formula gives: 

 ( ) ( ) ( ) ( ).p t e t Cx t r t    (28) 

Connecting the integral component will increase 

the system order, hence considering the integral p as an 

augmented state variable, the state equation of the 

integral augmented system is formulated as follows: 

 

 

0
.

0

00

0

x A x B
u

C

x
y

p p

p

r

C

         
                    


      




 (29) 

The above state equation can also be expressed as: 

 .d d d d

d d

x A x B u Er

y C x

  
 


 (30) 

After the augmentation of integrals, the system 

transitioned from its original n dimensions to n+k 

dimensions. Moreover, rank[Bd AdBd Ad
2Bd Ad

3Bd  

Ad
4Bd] = 5 = n+k. According to the necessary and 

sufficient conditions for controllability of the system, it 

is evident that the augmented system is controllable. 

Therefore, it is possible to design a sliding mode 

controller for the augmented controlled system. 

In designing a sliding mode controller, the initial 

step involves designing the sliding mode switching 

function, ensuring that it guarantees the asymptotic 

stability of the sliding motion and possesses excellent 

dynamic characteristics[21]. Let the switching function be: 

 ,dS Mx  (31) 

where M is the k×(n+k) coefficient matrix. 

Therefore, the sliding mode equation for the system 

during sliding motion on the switching surface is: 

 1( ) .d d d d dx I B MB AM x     (32) 

Due to the rank of Bd being m, there exists a non-

singular linear transformation xd = T𝑥, which transforms 

the augmented system state equation into the following 

form: 

 
11 11 12

2 22 21 22

0
,

xx A A
u

x Bx A A

      
       

      

   
     (33) 

where, 1
n k mx R    , 2

mx R  , 2B  are m×m invertible 

matrices. 
The corresponding switching surface becomes: 

 1 1 2 2 0.S MTx M x M x       (34) 

Furthermore, based on equation (33), it can be 

obtained that: 

 1
1 11 1 12 2 1 1 11 12 1) .(x A x A M M x A A xF           (35) 

The above equation is fully equivalent to the sliding 

mode equation, indicating that the sliding mode control 

system can be represented as an n+k-m dimensional 

subsystem described by the above equation. Moreover, 

since ( , )d dA B  is controllable, it follows that 11 12( , )A A   is 

also controllable, thus allowing the poles of the 

aforementioned subsystem to be arbitrarily placed by F. 

According to equation (34), the coefficient matrix 

M of the switching function is derived as: 

   1
2 .FM M T   (36) 

Thus, the sliding mode switching function can be 

determined, ensuring that the sliding mode motion is 

asymptotically stable. 

Next comes the design of the sliding mode control 

law. In order for the system to perform sliding mode 

motion, the control law must satisfy the reachability 

condition: 

 0.SS   (37) 

This study employs the hyperbolic tangent function 

tanh(αS) to replace the sign function sgn(S) typically 

used in exponential reaching laws, which effectively 

reduces chattering. The improved exponential reaching 

law is: 

 tanh( ) ,S S kS     (38) 

where, ε > 0, α > 0, k > 0. 

Subsequently, from the improved exponential 

reaching law, the sliding mode control law u satisfying 

the reachability condition can be derived as: 

 1( ) ( tanh( ) ).d d du MB MA x S kS      (39) 

The motion of the sliding mode control system 

consists of two parts. The first part is the motion stage 

where the system enters the switching surface from the 

initial point. By designing a Lyapunov function V(xd) = 

S2, since the sliding mode control law u always satisfies 

in 
pre

ss



10                Chinese Optics                                  第 ** 卷 

the reachability condition, it follows that ( ) 0dV x   . 

The second part is the motion stage of the system on the 

switching surface, where the system's stability can be 

ensured as long as the sliding mode switching function 

is appropriately designed. In conclusion, it can be seen 

that the sliding mode control system designed in this 

study is asymptotically stable. 

4.4 State Observer Design 

To achieve sliding mode inverse compensation 

control of the piezo-positioning system, it is necessary to 

obtain the full-dimensional state variable xd of the 

integral augmented system. The state variable p in xd 

represents the integral of the error signal, which can be 

directly measured, while the state variable x does not 

have a physical meaning and thus cannot be directly 

measured. In order to obtain the state variable x, it is 

essential to design a state observer for the original 

system. 

For the original system (25), rank[CT ATCT (AT)2CT 

(AT)3CT] = 4, it can be concluded from the necessary and 

sufficient conditions for observability that the original 

system is observable. The equation for the designed state 

observer is as follows: 

  ˆ ˆ ,x A GC x Bu Gy     (40) 

where G represents the feedback gain matrix. 

Constructing an asymptotic switching function 

based on the estimated state 𝑥: 

 ˆ ˆ .dS Mx  (41) 

Simultaneously, the sliding mode control law of the 

system is also transformed to: 

 1 ˆ ˆˆ( ) ( tanh( ) ).d d du MB MA x S kS      (42) 

At this point, the design of the piezo-positioning 

actuator integral augmented sliding mode inverse 

compensation control system is complete, with its 

system structural diagram shown in Fig.12. 

Integrator Controller
Piezo-

Positioning 
actuator

Notch 
filter

P-I inverse 
model-

r e up y

State 
observer

x̂

 
Fig.12 Piezo-positioning actuator control system structure block 

diagram 

5 Real-time Control Experiment 
5.1 Open-loop Inverse Control Experiment 

To verify the hysteresis compensation effect of the 

P-I inverse model, an open-loop inverse compensation 

control experiment is first conducted. The input is a 

sinusoidal signal with a frequency of 1 Hz and an 

amplitude of 15 V. The obtained fitting effect of the 

compensated input and output is shown in Fig.13, where 

it can be observed that after the introduction of the 

feedforward controller, the input-output curves of the 

system basically overlap, indicating a good 

compensation for the hysteresis nonlinearity. It is also 

evident that hysteresis nonlinearity is highly intricate, 

making it impossible to achieve extremely precise 

modeling in practice and completely compensate for all 

hysteresis characteristics, thus necessitating the use of 

sliding mode control to further suppress the incompletely 

compensated hysteresis nonlinearity. 

 
Fig.13 Control effect fitting diagram 

5.2 Sliding Mode Inverse Control Experiment 

Building upon the open-loop inverse compensation 

control, the sliding mode closed-loop control is then 

implemented based on the previously designed sliding 

mode controller. In order to validate the effectiveness 

and superiority of sliding mode inverse compensation 

control, this study designs a comparative experiment 

involving PID inverse compensation control and sliding 

mode control without inverse compensation. 

During the experiment, through repeated parameter 

simulations and physical tuning, taking into account the 

system's stability and robustness, parameter settings and 

adjustments were carried out. The finalized pole 

configuration of the sliding mode control equivalent 

subsystem (36) was determined to be [-3000±200i, -

2500±150i], with its corresponding state feedback 

matrix F = [5.67×1013, 8.28×1010, 4.53×107, 1.10×104]. 

Consequently, the switching function coefficient matrix 

M = [1.46, 1.35×104, 5.15×107, 8.91×1010, 14.07]. The 

pole configuration of the state observer was set as [-

5000±500i, -3000±200i], with its corresponding 
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feedback gain matrix G = [11.76, -0.01, 1.90×10-6, 

1.83×10-9]T. The parameters for the improved 

exponential reaching law were set as ε = 110, α = 2, k = 

1200, under which better control performance can be 

achieved. 

For the PID inverse compensation control as part of 

the comparative experiment, considering the system 

control performance in both the time domain and 

frequency domain, the parameters of the PID controller 

were ultimately set as Kp = 0.42, Ki = 344, Kd = 0. 

5.2.1 Time Domain Performance Test 

 
Fig.14 System step response curve 

Selecting a step signal as the system input to test the 

control effect of sliding mode inverse compensation 

control in the time domain, with a step signal amplitude 

of 10 V and an expected output displacement of 10 μm. 

The step responses of the three control schemes are 

shown in Fig.14. 

The system under PID inverse control exhibits an 

overshoot of 10.5% in its step response, with a settling 

time of 13.9 ms, using a ±2% error band as the criterion. 

On the other hand, the sliding mode control without 

inverse compensation shows no overshoot and a settling 

time of 9.0 ms. Similarly, the sliding mode inverse 

control also demonstrates no overshoot and a settling 

time of 6.2 ms. It is evident that compared to PID inverse 

control, both sliding mode inverse control and sliding 

mode control exhibit a significant reduction in overshoot. 

The settling time of sliding mode inverse control is 

approximately 55.4% shorter than PID inverse control 

and 31.1% shorter than sliding mode control. 

Furthermore, the sliding mode inverse control shows 

almost no sign of oscillation, while the sliding mode 

control exhibits slight oscillations due to the system's 

non-linear characteristics. 

5.2.2 Frequency Domain Tracking Performance Test 

To assess the tracking control performance in the 

frequency domain, a sinusoidal sweep signal with 

frequencies ranging from 0.1 to 500 Hz, an amplitude of 

15 V, and a bias of 15 V is used as the system input. The 

obtained closed-loop frequency characteristic curves for 

the three control schemes are depicted in Fig.15. 

 
Fig.15 Closed-loop frequency characteristic curve 

Based on the experimental results, the closed-loop 

tracking bandwidth (defined at -3 dB) for the system 

under PID inverse control is 91.5 Hz, for sliding mode 

control is 110.1 Hz, and for sliding mode inverse control 

is 119.9 Hz. Comparatively, sliding mode inverse control 

shows an increase in closed-loop tracking bandwidth of 

approximately 8.9% and 31.0% when compared to 

sliding mode control and PID inverse control, 

respectively. It is evident that sliding mode inverse 

compensation control demonstrates significant 

advantages, showcasing a more stable tracking control 

performance under varying frequency sweep input signal. 

5.2.3 Frequency Domain Disturbance Rejection 
Performance Test 

 
Fig.16 Disturbance rejection magnitude-frequency characteristic 

curve 

To evaluate the disturbance rejection control 

performance in the frequency domain, a sinusoidal 

sweep signal with frequencies ranging from 0.1 to 500 

Hz, an amplitude and bias of 1.5 V, is introduced as the 

disturbance signal. The system input is set to 0. The 
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disturbance rejection magnitude-frequency character-

istic curves for the three control schemes are illustrated 

in Fig.16. 

After testing, it is determined that the disturbance 

rejection bandwidth (defined at 0 dB) for the system 

under PID inverse control is 59.9 Hz, for sliding mode 

control is 63.9 Hz, and for sliding mode inverse control 

is 86.2 Hz. Comparatively, sliding mode inverse control 

shows an increase in disturbance rejection bandwidth of 

approximately 34.9% and 43.9% when compared to 

sliding mode control and PID inverse control, 

respectively. It is evident that sliding mode inverse 

compensation control exhibits a more effective 

disturbance rejection performance. 

6 Conclusion 

This study examines the system complexity 

characteristics of piezo-positioning systems and their 

demanding control bandwidth requirements. Our 

research endeavors to develop a precise Hammerstein 

model comprising a P-I model and a dynamic linear 

model in series. Building upon this, we propose a sliding 

mode inverse compensation control method that 

integrates a P-I inverse model with integral 

augmentation. 

The experimental results demonstrate that the 

dynamic hysteresis model of the piezo-positioning 

system developed in this study offers excellent 

generalization across typical input frequencies below 

200 Hz. The implemented sliding mode inverse 

compensation control effectively mitigates hysteresis 

nonlinearity, significantly enhancing the system's control 

precision and stability. Compared to PID inverse control 

and sliding mode control without inverse compensation, 

sliding mode inverse compensation control achieves a 

step response free of overshoot and oscillations, with a 

reduced settling time of 6.2 ms. This method exhibits 

robust resistance to hysteresis nonlinearity and external 

disturbances, showing enhanced adaptability to various 

input signals. The control system attains a closed-loop 

tracking bandwidth of 119.9 Hz and a disturbance 

rejection bandwidth of 86.2 Hz. This study validates the 

effectiveness and superiority of the sliding mode inverse 

compensation control approach in improving tracking 

accuracy and disturbance rejection capabilities of piezo-

positioning systems in practical engineering applications.

References： 

[1] VASILJEV P, MAZEIKA D, KULVIETIS G. Modeling and analysis of omni-directional piezoelectric actuator [J]. Journal of Sound 

and Vibration, 2007, 308: 867-878. 

[2] BROKATE M, SPREKELS J. Hysteresis and Phase Transitions [M]. Berlin: Springer-Verlag, 1996.  

[3] LEE S H, ROYSTON T J, FRIEDMAN G. Modeling and compensation of hysteresis in piezoceramic transducers for vibration 

control [J]. Journal of Intelligent Material Systems and Structures, 2000, 11(10): 781-790.  

[4] JILES D C, ATHERTON D L. Ferromagnetic hysteresis [J]. IEEE Transactions Magnetics, 1983, 19(5): 2183-2185. 

[5] JANAIDEH M A, RAKHEJA S, SU C Y. An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation 

in micropositioning control [J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(4): 734-744. 

[6] LI Z, SHAN J J, GABBERT U. Inverse compensation of hysteresis using krasnoselskii-pokrovskii model [J]. IEEE/ASME 

Transactions on Mechatronics, 2018, 23(2): 966-971. 

[7] WANG X H, SUN T. Preisach modeling of hysteresis for fast tool servo system [J]. Optics and Precision Engineering, 2009, 17(6): 

1421-1425. 

[8] WONG P K, XU Q, VONG C M, et al.. Rate-dependent hysteresis modeling and control of a piezostage using online support vector 

machine and relevance vector machine [J]. IEEE Transactions on Industrial Electronics, 2012, 59(4): 1988-2001. 

[9] DONG R, TAN Y, CHEN H, et al.. A neural networks based model for rate-dependent hysteresis for piezoceramic actuators [J]. 

Sensors and Actuators A: Physical, 2008, 143(2): 370-376. 

[10] MAO J Q, DING H S. Intelligent modeling and control for nonlinear systems with rate-dependent hysteresis [J]. Science in China 

Series F: Information Sciences, 2009, 52(4): 656-673. 

in 
pre

ss



第*期    LI Zhi-bin, et al.：Modeling and Sliding Mode Control Based on Inverse Compensation of Piezo-positioning System  13 

 

 

[11] 秦月霞, 胡德金. 压电驱动器的非线性建模[J]. 上海交通大学学报, 2004, 38(8): 1334-1336+1341. 

QIN Y X, HU D J. Nonlinear modeling for piezoelectric actuators [J]. Journal of Shanghai Jiaotong University, 2004, 38(8): 

1334-1336+1341. (in Chinese) 

[12] 韩同鹏, 李国平, 沈杰. 基于压电陶瓷微位移执行器的精密定位技术研究[J]. 传感器与微系统, 2010, 29(2): 51-53. 

HAN T P, LI G P, SHEN J. Study on accurate positioning technology of piezoelectric ceramics micro-displacement actuator [J]. 

Transducer and Microsystem Technologies, 2010, 29(2): 51-53. (in Chinese) 

[13] 孙涛, 李国平, 孙浩益. 基于 Duhem 模型和逆模型的压电执行器精密定位及控制[J]. 宁波大学学报(理工版), 2017, 30(1): 

13-17. 

SUN T, LI G P, SUN H Y. Accurate positioning and control of piezoelectric actuator based on Duhem model and inverse model 

[J]. Journal of Ningbo University (NSEE), 2017, 30(1): 13-17. (in Chinese) 

[14] 李黎, 刘向东, 王伟, 等. 压电陶瓷执行器迟滞特性的广义非线性 Preisach 模型及其数值实现[J]. 光学精密工程, 2007, 

15(5): 706-712. 

LI L, LIU X D, WANG W, et al.. Generalized nonlinear Preisach model for hysteresis nonlinearity of piezoceramic actuator and 

its numerical implementation [J]. Optics and Precision Engineering, 2007, 15(5): 706-712. (in Chinese) 

[15] JANAIDEH M A, SU C Y, RAKHEJA S. Development of the rate-dependent Prandtl-Ishlinskii model for smart actuators [J]. 

Smart Material and Structures, 2008, 17(3): 1-11. 

[16] XIAO S L, LI Y M. Modeling and high dynamic compensating the rate-dependent hysteresis of piezoelectric actuators via a novel 

modified inverse Preisach model [J]. IEEE Transactions on Control Systems Technology, 2013, 21(5): 1549-1557. 

[17] 刘永凯, 吕福睿, 高世杰, 等. 地基大口径望远镜动态目标跟踪中压电式快速反射镜迟滞效应的补偿[J]. 光学精密工程, 

2022, 30(23): 3081-3089. 

LIU Y K, LV F R, GAO S J, et al.. Compensation of hysteresis effect of piezoelectric fast steering mirror in dynamic target 

tracking of ground-based large aperture telescope system [J]. Optics and Precision Engineering, 2022, 30(23): 3081-3089. (in 

Chinese) 

[18] JANAIDEH M A, RAKOTONDRABE M, DARABSAH I A, et al.. Internal model-based feedback control design for inversion-

free feedforward rate-dependent hysteresis compensation of piezoelectric cantilever actuator [J]. Control Engineering Practice, 

2018, 72(3): 29-41. 

[19] WANG Q, SU C Y, TAN Y. On the control of plants with hysteresis: overview and a Prandtl-Ishlinskii hysteresis based control 

approach [J]. Acta Automatica Sinica, 2005, 31(1): 92-104. 

[20] 张建强, 孙崇尚, 吴佳彬, 等. 激光通信快速反射镜系统辨识与平衡截断[J]. 控制理论与应用, 2023: 1-9. 

ZHANG J Q, SUN C S, WU J B, et al.. System identification and balanced truncation of fast steering mirror for laser 

communication [J]. Control Theory & Applications, 2023: 1-9. (in Chinese) 

[21] 李智斌, 李亮, 张建强, 等. 双轴音圈电机快速反射镜的系统建模与滑模控制[J]. 光学精密工程, 2023, 31(24): 3580-3594. 

LI Z B, LI L, ZHANG J Q, et al.. System modeling and sliding mode control of dual-axis voice coil actuator fast steering mirror 

[J]. Optics and Precision Engineering, 2023, 31(24): 3580-3594. (in Chinese) 

Author Biography：
 
Li Zhibin (1965-), male, native of Bazhong, 
Sichuan Province, Ph.D., professor, doctoral 
supervisor. He obtained his Ph.D. from 
Tsinghua University in 2003. He is currently 
a professor at College of Electrical 
Engineering and Automation, Shandong 
University of Science and Technology. His 
main research interests include modeling and 

control of complex system dynamics. 
E-mail: zhibin.li@sdust.edu.cn 
 

 
Zhang Jianqiang (1992-), male, native of 
Qingzhou, Shandong Province, Ph.D., 
assistant professor at Center for Advanced 
Control and Smart Operations, Nanjing 
University. He obtained his Ph.D. from 
Changchun Institute of Optics, Fine 
Mechanics and Physics, Chinese Academy 
of Sciences in 2020. His main research 

focuses on laser communication servo systems, robust control, 
and model identification. 
E-mail: zhangjg7170@163.com 

in 
pre

ss


