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Abstract: Restoration of phase aberrations is crucial for addressing atmospheric
turbulence involved light propagation. Traditional Zernike polynomials (ZPs)
restoration algorithms often encounter challenges related to high computational
complexity and insufficient capture of high-frequency phase aberration components, so
we proposed Principal Component Analysis based method for representation of phase
aberrations. This paper discusses the factors that influence the accuracy of restoration
using Principal Components (PCs), mainly the size of sample space and sampling
interval of D/ro, which is used to characterize the strength with ro being the atmospheric
coherence length and D being the pupil diameter, on the basis of characterizing phase
aberrations by PCs. The experimental results show that: a larger D/ro sampling interval
can ensure the generalization ability and robustness of the principal components in the
case of a limited amount of original data, which can help to quickly achieve high-

precision deployment of the model in practical applications. In the environment of
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relatively strong turbulence in the test set of D/ro = 24, the use of 34 terms of PCs can
improve the corrected Strehl ratio (SR) from 0.007 to 0.1585, while the Strehl ratio of
the light spot after restoration using 34 terms of ZPs is only 0.0215, which has almost
no correction effect. The results indicate that PCs can be served as a better alternative
in representing and restoring the characteristics of atmospheric turbulence induced
phase aberrations. These findings pave a way to use PCs of phase aberrations with less
terms than traditional ZPs to achieve data dimensionality reduction, and offer a
reference to accelerate and stabilize the model based and deep learning based adaptive

optics correction.
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1. Introduction

Atmospheric turbulence can affect the quality of light waves and then impact the clarity
and resolution of astronomical observations and the transmission of free-space optical
communications [1,2]. Adaptive optics technology was therefore proposed to correct
phase aberrations caused by atmospheric turbulence using efficient wavefront sensing

[3,4].

Both traditional Shack—Hartmann wavefront sensor and the shearing
interferometer have problems and thus can't restore phase distortion very well. The
Shack—Hartmann wavefront sensor can only measure the phase aberration with limited
spatial resolution because of the sub-aperture constriction [5,6]. And the shearing
interferometer splits the beam into two wavefronts, which lower the light energy
utilization efficiency and subsequently reduce the accuracy of wavefront sensing [7,8].
In recent years, image-based wavefront sensing has gained attention. With the help of
deep learning (DL), wavefront reconstruction is now much more efficient and accurate
[9-12]. Paine et al [13] predicted Zernike polynomials (ZPs) coefficients from a
computational simulated point spread function (PSF) using convolutional neural
network (CNN) for the reconstruction of wavefront in 2018. Nishikazi et al [14]
experimentally verified the effectiveness of CNN in predicting coefficients of ZPs and
estimating wavefront aberrations in 2019. Ge et al [15] further used a DL network to
achieve high-precision mapping of phase features to wavefront aberrations in phase

reconstruction in 2024.

Most image-based wavefront sensing methods use ZPs, a classic way to represent
phase aberrations, as mentioned above. The higher the term of ZPs used, the more high-
frequency components captured, and the more accurate the restoration of phase
aberrations [16]. However, using more ZPs makes the computer work harder, which
makes prediction less accurate by CNN model [17], while using fewer ZPs reduces the

generalization ability of the model to deal with complex environments such as strong
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turbulence.

Currently, the statistical Principal Component Analysis (PCA) method is
becoming popular. PCA can identify the most dominated features from a large dataset.
Over the past few years researchers have successfully applied PCA to reduce speckle
noise [18], denoise meteorological echoes [19], and combine with neural network to

correct non-common path aberrations [20].

Inspired by the success implementation of using PCA, we had performed PCA on
representation of phase aberrations caused by atmospheric turbulence and proved its
validity. In this work, we discussed the factors affecting the restoration accuracy by

principal components (PCs), mainly the size of sample space and sampling interval of

D /1, onthe basis of characterizing phase aberrations by PCs. In section 2, we provide

a basic overview of the method used in the paper, and section 3 introduces the
simulation process. We verify and compare the representation and restoration
performance of PCA method with the traditional ZPs method in section 4. Our analysis
proved that the PCA method evidently outperforms traditional ZPs across varying
atmospheric turbulence strength, especially in challenging situations such as strong
turbulence, providing a statistical reference for data acquisition for PCs model

deployment in real applications.
2. Methods

To simulate atmospheric turbulence accurately, we create a phase screen data set
that satisfies the modified Von Karman power spectrum using Fast Fourier Transform

[21], and the inner and outer scale of atmospheric turbulence are set as 0.005m and 10m.
According to Noll [22], the phase aberration W (p,f) can be represented as a
combination of ZP Z; (p,0) with coefficients a;. This paper ignores the first three

terms of ZPs, which does not change the morphology of the aberration, and focuses on
the aberration above the 4™ term: defocus. As ZP patterns are generally grouped in terms

of spherical aberration, it is generally accepted that aberration patterns prior to the
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tertiary Spherical aberration carry more weight and the use of more terms increases the
computational burden, but the improvement to aberration restoration is small. So, we
used 4th to 37th ZPs (tertiary Spherical aberration) to fit the original phase aberration
and set the piston, x tilt, and y tilt terms to 0 to generate a new phase aberration dataset,

as shown in the following expression:
37
Wl(plg)zzajzj(pie)’ (1)
j—4

Where , and ¢ are the radial and azimuthal variables in a polar coordinate. ZPs

have a specific pattern for each term, with more information in higher terms. More
terms allow the phase aberration to be restored more finely, but it is slower and less
efficient. A few terms are therefore often used but higher frequencies are often missed.
Then, we propose PCA method, a useful statistical tool for reducing multiple complex
variables, to represent and restore the phase aberrations. The old variables are combined

to form new variables as:
%, =Vx, 2)

where Y, = (Vy;, Yo,"**sYyi) ' 1S the new variable, X = (X;, Xy, X;)' is the

original variable. This approach keeps the information in both lower and higher-term
components in each new single mode. The first m new variables with the highest
variance, 1.e., the PCs, are selected to distill the essence of the original dataset. This
summary shows the main features of the original data and reduces the number of
dimensions. To be consistent with Eq.(1) above, the representation of the phase

aberration fitted using the first 34 terms of PCs is shown below:
- Ty-1
WZ(/O’Q):Z[(C )7 ><I:)Cj]i (3)
=1

where C is the transformation matrix of PCA, and PC;is the j™ PC term. To

analyze the validity of PCA in different conditions, we need to create datasets that show
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different levels of turbulence. Based Lane's derivation [23], D/r, is used to
characterize the strength with 1, being the atmospheric coherence length and D being

the pupil diameter. The numerical interval is D/r, from 1 to 30. Where, 1-10 is

relatively weak turbulence, 10-20 is medium and 20-30 is relatively strong. Further, the
Strehl ratio (SR) of the PSF is used to evaluate the effectiveness of phase restoration by

performing a fast Fourier transform on the residual phase aberration.
3. Simulation

This paper focuses on the analysis of the influencing factors of the accuracy of PCs

restoration of phase aberration, which are: size of the sample space of the original phase
data, and the sampling interval of D/r,. In order to conduct a more comprehensive

analysis of the restoration effectiveness of PCs in different propagation conditions,

generating phase datasets that can encompass different turbulence strength is necessary.
The simulation was performed according to the following steps:

(1) Generate the original sample space containing N distorted phases randomly,
then perform a PCA on the base data to generate the PCs respectively. We
chose N = 5000, 10000 and 30000.

(2) For the equivalent size of sample space, generate two sample spaces with

different D/r, sampling intervals, average distribution between 1-30 as

space 4, and D/ r =5, 15, and 25 as representative values of weak, medium

and strong turbulence, respectively, as space B, and perform a PCA on datasets

A and B to extract corresponding PCs.

(3) Restore the phase aberrations of the test set under different turbulence strength
using 8,19,34 terms of ZPs and PCs obtained from different sample spaces.
The terms employed are based on the Zernike primary, secondary and tertiary
spherical aberrations (11th, 22nd and 37th). That is, using the ZPs starting

from the 4" term of defocus and ending with the spherical aberration term, a
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total of 8, 19 and 34 terms of modes are included. And compare the restoration

effects of the two methods of the same atmospheric turbulence strength.

4. Results

Original Restored Residual and Corrected Phase PSF

0.4
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°
~

SR=0.1561 | SR=0.1990 | SR=0.2183 | SR=0.1171 oaz
Fig. 1. Examples of restoration by ZPs vs PCs obtained from different sizes of sample spaces
(a) D/r, =8, using first 8 terms; (b) D/ r, =16, using first 19 terms;

(c) D/ry =24, using first 34 terms.
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Fig.1 shows the restoration effects of equivalent terms of ZPs and PCs obtained

from A4-5000, 4-10000, and 4-30000 datasets. In order to provide a comprehensive

demonstration of the restoration effects, we took test sets of D/r,=38, 16, and 24, and

restoration was performed using first 8, 19, and 34 terms PCs and ZPs, respectively.
The terms employed are started with 4" ZP: defocus, and end with the Zernike primary,
secondary and tertiary spherical aberrations (11%, 227 and 37%). Fig. 1 shows the
positive correlation between the amount of original data and the restoration effect of
PCs. When 5000 sets of original phase data are used, the advantage of PCs may not be
obvious yet: the corrected SR obtained using 8 terms of PCs obtained from 5000 sets
of original data in graph (a) is only slightly higher than SR obtained by ZPs; as the
amount of original data increases, the accuracy of PCs improves, and the gap with ZPs
gradually widens: when using the PCs generated from 30000 sets of original data, the
corrected spot is clear and bright in graph (c), where the turbulence is stronger and the
SR can reach 0.2183. At which point the SR after restoration using PCs obtained from
5000 sets is 0.1561, while the SR after restoration using equivalent terms of ZPs is only
0.1171. It can be seen that when the turbulence is strong, the advantage of PCs is more
significant, showing that PCs are stable and consistent, and can adapt to different

environments.
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Fig. 2. Examples of restoration by 8, 19 and 34 PCs
(a D/ry=8;() D/ry,=16;(c) D/r, =24

B2 - HH[RGHAL SR i FAS R 2 PCs A 2N IR SR 38 R

Furthermore, Fig. 2 shows the effect of using different numbers of terms of PCs to restore the
same phase aberration under the same turbulence strength. The PCs used were extracted from 30000
sets of original data. Combined with Fig. 1, it can be seen that when the turbulence strength is weak,
the phase aberration can be effectively restored using only 8 terms of PCs, and the corrected SR
reaches 0.4131, which further indicates that the PCs can effectively extract the main features of the
phase aberrations; when the turbulence strength is medium, the aberration can be effectively restored
using 19 terms of PCs, and in the case of strong turbulence, the phase aberration can still be stably
restored using 34 terms of PCs, and the corrected SR is about 0.2. This result again shows that PCs

have the robustness to manage different turbulent environments and may be more suitable than ZPs
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for working in challenging environments such as strong turbulence.

10 8 PCs (5000)
0.9 .= 19PCs(5000)
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Fig. 3. Mean Strehl ratio after phase aberration restoration by ZPs vs PCs obtained from different sizes

of sample spaces
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Fig.3 further explores the mean SR after restoring phase aberrations at different
turbulence strengths using equivalent terms of ZPs and PCs that were extracted from
different sample spaces. It can be seen that the PCs obtained from the 30000 sets of
original phase data is the most effective in restoring the phase aberrations. This is
because the larger the data volume, the broader the model. It's worth noting that PCs
from 10000 sets (blue triangular scatter lines) and 30000 sets (orange circle scatter lines)
almost overlap in Fig.3, suggesting a limited impact of size of sample space. If the
original data already covers enough phase information, adding more sampled data won't
improve the accuracy of PCs much, but will just make the data more redundant, which
will hinder the rapid deployment of models in real-world applications. This provides an

important basis for model optimization of PCs in practical applications.

Although increasing the size of the sample space can improve the accuracy of PCs,
it can also increase the burden of computational and time costs. In the actual model
deployment, it’s desirable to obtain the most accurate PCs of the phase aberrations

caused by the local atmospheric turbulence with the shortest possible sampling time.

The D/r, sampling interval is increased from 1 in 4-space to 10 in B-space to analyze

the impact of the sampling interval on the accuracy of the PCs. Fig.4 shows the
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comparison of the restoration for the same phase aberrations by PCs obtained from A-
5000 and B-5000. It is clear that the restoration by PCs obtained from the B-5000 with

larger sampling intervals are much better than those from the 4-5000.
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Fig. 4. Mean Strehl ratio after phase aberration restoration by PCs obtained from A4-5000 vs. B-5000
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Table 1 - Mean Strehl Ratio after phase restoration by PCs obtained from B-5000 vs A-30000 (The first

row 4-28 indicatesthe D/r, of test sets)

#* 1 - M B-5000 5 A-30000 $2HXI¥) PCs i SR AH LI AS JE M SR XFEE (55 —HF 4728 Fox KA1

D/r)

/I"()
Terms 4 8 12 16 20 24 28

N

5000 0.719 03563 0.1437 0.0515 0.0177 0.0072  0.0046
30000 0.7204 0.3577 0.1439 0.0521 0.0176  0.0073  0.0047
5000 0.8496 0.5989  0.368 0.204 0.103  0.0482 0.0235
30000 0.8505 0.6011 0.3702 0.2049 0.1041 0.0488  0.024
5000 09101 0.7412 0.5547 0.3925 0.2582 0.1616 0.0978
30000 09108 0.7436 0.5582 03978 0.2636 0.1644  0.1002

19

34

Tab-1 shows the comparison of the restoration by PCs from B-5000 and 4-30000,
and it can be seen that when the sampling interval is increased, the accuracy of the PCs
obtained from only 5000 sets of sampled data can be comparable to that obtained from

30000 sets of sampled data.

This is because when the sampling interval is increased, the number of sampling
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points is reduced and the size of the sample space corresponding to a single sampling
point is increased, so that dataset can contain more different information in a wider
range. Therefore, when it is necessary to deploy the PCs model quickly for restoration,
the size of the sample space can be reduced and the sampling interval can be increased
to ensure the generalization and robustness of the model while reducing the redundancy

of the data.

Fig.5 is the examples of restoration by PCs generated from the B-5000 and ZPs of
equivalent terms. The graph (c) in Fig.5 reflects that in challenging environments, such
as strong turbulence, PCs are more effective than ZPs for restoration of phase aberration.
Both using the first 34 terms, the SR of the PSF after restoration by PCs has reached
0.1585, which can meet the requirements of engineering applications. While at this time,
the SR of the PSF after restoration by ZPs is only 0.02, and comparing with the SR of
the original spot PSF, which is 0.007, the effect of the ZP for restoration is almost
negligible. It can be seen that PCs perform better, which is consistent with the previous

Fig.1 and Fig.3, demonstrating the stability of PCs again.

Original Residual and Corrected  phase PSF Original Residual and Corrected  phase PSF

oz
02
018
1 0.16
014
0.12

~ SR=0.1636 | B B

)

SR=0.0070 | SR=0. 1585 SR=0.0215

Fig. 5. Examples of restoration of phase aberrations by the equivalent terms of ZPs vs PCs obtained

from B-5000

(a) D/r,=8,using first 8 terms; (b) D/ r, =16, using first 19 terms; (c) D/ r, = 24, using first 34

terms.
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5. Conclusion

In this paper, the factors affecting the restoration accuracy of PCs, mainly the size

of sample space and D/r, sampling interval, are discussed in depth on the basis of

characterizing phase aberrations by PCs. The results show that the more the sample data,
the higher the accuracy of the PCs and the better the adaptability in restoring phase
aberrations in different environments. However, when the sample space contains
enough phase information, the increase in the sampled data no longer improves the
accuracy of the PCs but results in data waste. When the model needs to be deployed
quickly, the generalization and robustness of PCs can be ensured by appropriately

reducing the size of sample space and increasing the sampling interval.

In general, our work reveals that PCA method evidently outperforms traditional
ZPs across varying atmospheric turbulence strength, especially in challenging
situations such as strong turbulence, indicating that PCA method can be served as a
better alternative in restoring the phase aberrations induced by atmospheric turbulence.
These findings may help to reduce data dimensionality, i.e., using PCs of phase
aberrations with less terms than traditional ZPs, which is useful for improving model-

based and deep learning based adaptive optics correction.
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