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Abstract:  Restoration of phase aberrations is crucial for addressing atmospheric 

turbulence involved light propagation. Traditional Zernike polynomials (ZPs) 

restoration algorithms often encounter challenges related to high computational 

complexity and insufficient capture of high-frequency phase aberration components, so 

we proposed Principal Component Analysis based method for representation of phase 

aberrations. This paper discusses the factors that influence the accuracy of restoration 

using Principal Components (PCs), mainly the size of sample space and sampling 

interval of D/r0, which is used to characterize the strength with r0 being the atmospheric 

coherence length and D being the pupil diameter, on the basis of characterizing phase 

aberrations by PCs. The experimental results show that: a larger D/r0 sampling interval 

can ensure the generalization ability and robustness of the principal components in the 

case of a limited amount of original data, which can help to quickly achieve high-

precision deployment of the model in practical applications. In the environment of 
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relatively strong turbulence in the test set of D/r0 = 24, the use of 34 terms of PCs can 

improve the corrected Strehl ratio (SR) from 0.007 to 0.1585, while the Strehl ratio of 

the light spot after restoration using 34 terms of ZPs is only 0.0215, which has almost 

no correction effect. The results indicate that PCs can be served as a better alternative 

in representing and restoring the characteristics of atmospheric turbulence induced 

phase aberrations. These findings pave a way to use PCs of phase aberrations with less 

terms than traditional ZPs to achieve data dimensionality reduction, and offer a 

reference to accelerate and stabilize the model based and deep learning based adaptive 

optics correction. 

Key words: phase aberration; atmospheric turbulence; principal component 

analysis; Zernike polynomials 
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摘 要：为了有效表征、还原大气湍流造成的相位畸变，解决传统Zernike多项式方法引起的相位还原高频

信息不足问题，提出了基于主成分分析法的畸变相位特征表征、还原方法，对可能影响主成分精度从而影

响还原效果的因素进行研究。首先建立了几组包含满足Von-Karman功率谱的畸变相位的原始数据集，几组

数据集样本数量不等，并生成了D/r0 采样间隔分别为1和10的样本空间，D/r0 用于描述湍流强度，其中r0 是

大气相干长度，D是光瞳直径。接着建立了不同湍流强度下畸变相位的测试集数据。之后从不同原始数据集

中提取对应的主成分，并分别使用相同项数的主成分与Zernike多项式对同一组测试集畸变相位进行还原。

最终对比还原结果，分析原始数据样本量和D/r0 采样间隔对主成分精度的影响。实验结果表明结果：更大

的D/r0 采样间隔可以在原始数据量有限的情况下保证主成分的泛化能力和鲁棒性，从而帮助实际应用中快

速实现模型的高精度部署；在测试集D/r0 =24的相对湍流较强的环境下，使用34阶主成分可以将校正后光斑

Strehl比从原始的0.007提升至0.1585，而同样使用34阶Zernike还原后的光斑Strehl比仅为0.0215，几乎

没有校正效果。可以看出基于主成分分析法的大气湍流相位畸变表征和还原方法优于Zernike多项式，可以

为基于模型和深度学习的自适应光学校正提供参考。 
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1. Introduction 

Atmospheric turbulence can affect the quality of light waves and then impact the clarity 

and resolution of astronomical observations and the transmission of free-space optical 

communications [1,2]. Adaptive optics technology was therefore proposed to correct 

phase aberrations caused by atmospheric turbulence using efficient wavefront sensing 

[3,4].  

Both traditional Shack–Hartmann wavefront sensor and the shearing 

interferometer have problems and thus can't restore phase distortion very well. The 

Shack–Hartmann wavefront sensor can only measure the phase aberration with limited 

spatial resolution because of the sub-aperture constriction [5,6]. And the shearing 

interferometer splits the beam into two wavefronts, which lower the light energy 

utilization efficiency and subsequently reduce the accuracy of wavefront sensing [7,8]. 

In recent years, image-based wavefront sensing has gained attention. With the help of 

deep learning (DL), wavefront reconstruction is now much more efficient and accurate 

[9-12]. Paine et al [13] predicted Zernike polynomials (ZPs) coefficients from a 

computational simulated point spread function (PSF) using convolutional neural 

network (CNN) for the reconstruction of wavefront in 2018. Nishikazi et al [14] 

experimentally verified the effectiveness of CNN in predicting coefficients of ZPs and 

estimating wavefront aberrations in 2019. Ge et al [15] further used a DL network to 

achieve high-precision mapping of phase features to wavefront aberrations in phase 

reconstruction in 2024. 

Most image-based wavefront sensing methods use ZPs, a classic way to represent 

phase aberrations, as mentioned above. The higher the term of ZPs used, the more high-

frequency components captured, and the more accurate the restoration of phase 

aberrations [16]. However, using more ZPs makes the computer work harder, which 

makes prediction less accurate by CNN model [17], while using fewer ZPs reduces the 

generalization ability of the model to deal with complex environments such as strong 
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turbulence. 

Currently, the statistical Principal Component Analysis (PCA) method is 

becoming popular. PCA can identify the most dominated features from a large dataset. 

Over the past few years researchers have successfully applied PCA to reduce speckle 

noise [18], denoise meteorological echoes [19], and combine with neural network to 

correct non-common path aberrations [20].  

Inspired by the success implementation of using PCA, we had performed PCA on 

representation of phase aberrations caused by atmospheric turbulence and proved its 

validity. In this work, we discussed the factors affecting the restoration accuracy by 

principal components (PCs), mainly the size of sample space and sampling interval of 

0/D r  on the basis of characterizing phase aberrations by PCs. In section 2, we provide 

a basic overview of the method used in the paper, and section 3 introduces the 

simulation process. We verify and compare the representation and restoration 

performance of PCA method with the traditional ZPs method in section 4. Our analysis 

proved that the PCA method evidently outperforms traditional ZPs across varying 

atmospheric turbulence strength, especially in challenging situations such as strong 

turbulence, providing a statistical reference for data acquisition for PCs model 

deployment in real applications.  

2. Methods 

To simulate atmospheric turbulence accurately, we create a phase screen data set 

that satisfies the modified Von Karman power spectrum using Fast Fourier Transform 

[21], and the inner and outer scale of atmospheric turbulence are set as 0.005m and 10m. 

According to Noll [22], the phase aberration ( , )W  can be represented as a 

combination of  ZP jZ ( , ) with coefficients ja . This paper ignores the first three 

terms of ZPs, which does not change the morphology of the aberration, and focuses on 

the aberration above the 4th term: defocus. As ZP patterns are generally grouped in terms 

of spherical aberration, it is generally accepted that aberration patterns prior to the 
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tertiary Spherical aberration carry more weight and the use of more terms increases the 

computational burden, but the improvement to aberration restoration is small. So, we 

used 4th to 37th ZPs (tertiary Spherical aberration) to fit the original phase aberration 

and set the piston, x tilt, and y tilt terms to 0 to generate a new phase aberration dataset, 

as shown in the following expression: 

 
37

1

4

( , ) ( , ),j j

j

W a Z  
(1)

 

Where  and  are the radial and azimuthal variables in a polar coordinate. ZPs 

have a specific pattern for each term, with more information in higher terms. More 

terms allow the phase aberration to be restored more finely, but it is slower and less 

efficient. A few terms are therefore often used but higher frequencies are often missed. 

Then, we propose PCA method, a useful statistical tool for reducing multiple complex 

variables, to represent and restore the phase aberrations. The old variables are combined 

to form new variables as: 

 
i ' ,iy V x  

(2) 

where 1 2( , , ) '…,i i i niy y y y   is the new variable ， 1 2( , , ) '…,i i i nix x x x   is the 

original variable. This approach keeps the information in both lower and higher-term 

components in each new single mode. The first m   new variables with the highest 

variance, i.e., the PCs, are selected to distill the essence of the original dataset. This 

summary shows the main features of the original data and reduces the number of 

dimensions. To be consistent with Eq.(1) above, the representation of the phase 

aberration fitted using the first 34 terms of PCs is shown below: 

 
34
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(3) 

where C  is the transformation matrix of PCA, and jPC is the thj  PC term. To 

analyze the validity of PCA in different conditions, we need to create datasets that show 
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different levels of turbulence. Based Lane's derivation [23], 0/D r   is used to 

characterize the strength with 0r  being the atmospheric coherence length and D being 

the pupil diameter. The numerical interval is 0/D r   from 1 to 30. Where, 1-10 is 

relatively weak turbulence, 10-20 is medium and 20-30 is relatively strong. Further, the 

Strehl ratio (SR) of the PSF is used to evaluate the effectiveness of phase restoration by 

performing a fast Fourier transform on the residual phase aberration. 

3. Simulation 

This paper focuses on the analysis of the influencing factors of the accuracy of PCs 

restoration of phase aberration, which are: size of the sample space of the original phase 

data, and the sampling interval of 0/D r . In order to conduct a more comprehensive 

analysis of the restoration effectiveness of PCs in different propagation conditions, 

generating phase datasets that can encompass different turbulence strength is necessary. 

The simulation was performed according to the following steps: 

(1) Generate the original sample space containing N distorted phases randomly, 

then perform a PCA on the base data to generate the PCs respectively. We 

chose N = 5000, 10000 and 30000. 

(2) For the equivalent size of sample space, generate two sample spaces with 

different 0/D r   sampling intervals, average distribution between 1-30 as 

space A, and 0/D r =5, 15, and 25 as representative values of weak, medium 

and strong turbulence, respectively, as space B, and perform a PCA on datasets 

A and B to extract corresponding PCs. 

(3) Restore the phase aberrations of the test set under different turbulence strength 

using 8,19,34 terms of ZPs and PCs obtained from different sample spaces. 

The terms employed are based on the Zernike primary, secondary and tertiary 

spherical aberrations (11th, 22nd and 37th). That is, using the ZPs starting 

from the 4th term of defocus and ending with the spherical aberration term, a 
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total of 8, 19 and 34 terms of modes are included. And compare the restoration 

effects of the two methods of the same atmospheric turbulence strength. 

4. Results 

 

Fig. 1. Examples of restoration by ZPs vs PCs obtained from different sizes of sample spaces 

(a) = 8 ,0D / r using first 8 terms; (b) = 16 ,0D / r using first 19 terms;  

(c) = 24 ,0D / r using first 34 terms. 

图 1 - 不同数据量提取的 PCs 与 ZPs 还原相位畸变的效果示例in 
pre

ss
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(a) = 8 0D / r ，使用 8 项模式;(b) =16 0D / r ，使用 19 项模式;(c) = 24 0D / r ，使用 34 项模式 

Fig.1 shows the restoration effects of equivalent terms of ZPs and PCs obtained 

from A-5000, A-10000, and A-30000 datasets. In order to provide a comprehensive 

demonstration of the restoration effects, we took test sets of 0/D r = 8, 16, and 24, and 

restoration was performed using first 8, 19, and 34 terms PCs and ZPs, respectively. 

The terms employed are started with 4th ZP: defocus, and end with the Zernike primary, 

secondary and tertiary spherical aberrations (11th, 22nd and 37th). Fig. 1 shows the 

positive correlation between the amount of original data and the restoration effect of 

PCs. When 5000 sets of original phase data are used, the advantage of PCs may not be 

obvious yet: the corrected SR obtained using 8 terms of PCs obtained from 5000 sets 

of original data in graph (a) is only slightly higher than SR obtained by ZPs; as the 

amount of original data increases, the accuracy of PCs improves, and the gap with ZPs 

gradually widens: when using the PCs generated from 30000 sets of original data, the 

corrected spot is clear and bright in graph (c), where the turbulence is stronger and the 

SR can reach 0.2183. At which point the SR after restoration using PCs obtained from 

5000 sets is 0.1561, while the SR after restoration using equivalent terms of ZPs is only 

0.1171. It can be seen that when the turbulence is strong, the advantage of PCs is more 

significant, showing that PCs are stable and consistent, and can adapt to different 

environments. 
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Fig. 2. Examples of restoration by 8, 19 and 34 PCs 

(a) = 80D / r ; (b) = 160D / r ; (c) = 240D / r  

图 2 – 相同湍流强度下使用不同数量 PCs 模式的还原效果示例 

Furthermore, Fig. 2 shows the effect of using different numbers of terms of PCs to restore the 

same phase aberration under the same turbulence strength. The PCs used were extracted from 30000 

sets of original data. Combined with Fig. 1, it can be seen that when the turbulence strength is weak, 

the phase aberration can be effectively restored using only 8 terms of PCs, and the corrected SR 

reaches 0.4131, which further indicates that the PCs can effectively extract the main features of the 

phase aberrations; when the turbulence strength is medium, the aberration can be effectively restored 

using 19 terms of PCs, and in the case of strong turbulence, the phase aberration can still be stably 

restored using 34 terms of PCs, and the corrected SR is about 0.2. This result again shows that PCs 

have the robustness to manage different turbulent environments and may be more suitable than ZPs 
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for working in challenging environments such as strong turbulence. 
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Fig. 3. Mean Strehl ratio after phase aberration restoration by ZPs vs PCs obtained from different sizes 

of sample spaces 

图 3 – 使用不同数据量提取的 PCs 与 ZPs 还原相位畸变后均值 SR 对比 

Fig.3 further explores the mean SR after restoring phase aberrations at different 

turbulence strengths using equivalent terms of ZPs and PCs that were extracted from 

different sample spaces. It can be seen that the PCs obtained from the 30000 sets of 

original phase data is the most effective in restoring the phase aberrations. This is 

because the larger the data volume, the broader the model. It's worth noting that PCs 

from 10000 sets (blue triangular scatter lines) and 30000 sets (orange circle scatter lines) 

almost overlap in Fig.3, suggesting a limited impact of size of sample space. If the 

original data already covers enough phase information, adding more sampled data won't 

improve the accuracy of PCs much, but will just make the data more redundant, which 

will hinder the rapid deployment of models in real-world applications. This provides an 

important basis for model optimization of PCs in practical applications. 

Although increasing the size of the sample space can improve the accuracy of PCs, 

it can also increase the burden of computational and time costs. In the actual model 

deployment, it’s desirable to obtain the most accurate PCs of the phase aberrations 

caused by the local atmospheric turbulence with the shortest possible sampling time. 

The 0/D r  sampling interval is increased from 1 in A-space to 10 in B-space to analyze 

the impact of the sampling interval on the accuracy of the PCs. Fig.4 shows the 
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comparison of the restoration for the same phase aberrations by PCs obtained from A-

5000 and B-5000. It is clear that the restoration by PCs obtained from the B-5000 with 

larger sampling intervals are much better than those from the A-5000.  
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Fig. 4. Mean Strehl ratio after phase aberration restoration by PCs obtained from A-5000 vs. B-5000 

图 4 – 使用 A-5000 与 B-5000 提取的 PCs 还原相位畸变后均值 SR 对比 

Table 1 - Mean Strehl Ratio after phase restoration by PCs obtained from B-5000 vs A-30000 (The first 

row 4-28 indicates the 0/D r  of test sets) 

表 1 – 使用 B-5000 与 A-30000 提取的 PCs 还原相位畸变后均值 SR 对比（第一排 4~28 表示测试集的

0/D r ） 

Terms 
 D/r0 

N 

4 8 12 16 20 24 28 

8 
5000 0.719 0.3563 0.1437 0.0515 0.0177 0.0072 0.0046 

30000 0.7204 0.3577 0.1439 0.0521 0.0176 0.0073 0.0047 

19 
5000 0.8496 0.5989 0.368 0.204 0.103 0.0482 0.0235 

30000 0.8505 0.6011 0.3702 0.2049 0.1041 0.0488 0.024 

34 
5000 0.9101 0.7412 0.5547 0.3925 0.2582 0.1616 0.0978 

30000 0.9108 0.7436 0.5582 0.3978 0.2636 0.1644 0.1002 

 

Tab-1 shows the comparison of the restoration by PCs from B-5000 and A-30000, 

and it can be seen that when the sampling interval is increased, the accuracy of the PCs 

obtained from only 5000 sets of sampled data can be comparable to that obtained from 

30000 sets of sampled data. 

This is because when the sampling interval is increased, the number of sampling 
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points is reduced and the size of the sample space corresponding to a single sampling 

point is increased, so that dataset can contain more different information in a wider 

range. Therefore, when it is necessary to deploy the PCs model quickly for restoration, 

the size of the sample space can be reduced and the sampling interval can be increased 

to ensure the generalization and robustness of the model while reducing the redundancy 

of the data. 

Fig.5 is the examples of restoration by PCs generated from the B-5000 and ZPs of 

equivalent terms. The graph (c) in Fig.5 reflects that in challenging environments, such 

as strong turbulence, PCs are more effective than ZPs for restoration of phase aberration. 

Both using the first 34 terms, the SR of the PSF after restoration by PCs has reached 

0.1585, which can meet the requirements of engineering applications. While at this time, 

the SR of the PSF after restoration by ZPs is only 0.02, and comparing with the SR of 

the original spot PSF, which is 0.007, the effect of the ZP for restoration is almost 

negligible. It can be seen that PCs perform better, which is consistent with the previous 

Fig.1 and Fig.3, demonstrating the stability of PCs again. 

 

Fig. 5. Examples of restoration of phase aberrations by the equivalent terms of ZPs vs PCs obtained 

from B-5000 

 (a) = 8 ,0D / r using first 8 terms; (b) = 16 ,0D / r using first 19 terms; (c) = 24 ,0D / r using first 34 

terms. 
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图 5 – 使用相等数量的 PCs（从 B-5000 提取）和 ZPs 模式还原相位畸变效果示例 

(a) = 8 0D / r ，使用 8 项模式;(b) =16 0D / r ，使用 19 项模式;(c) = 24 0D / r ，使用 34 项模式 

5. Conclusion 

In this paper, the factors affecting the restoration accuracy of PCs, mainly the size 

of sample space and 0/D r  sampling interval, are discussed in depth on the basis of 

characterizing phase aberrations by PCs. The results show that the more the sample data, 

the higher the accuracy of the PCs and the better the adaptability in restoring phase 

aberrations in different environments. However, when the sample space contains 

enough phase information, the increase in the sampled data no longer improves the 

accuracy of the PCs but results in data waste. When the model needs to be deployed 

quickly, the generalization and robustness of PCs can be ensured by appropriately 

reducing the size of sample space and increasing the sampling interval.  

In general, our work reveals that PCA method evidently outperforms traditional 

ZPs across varying atmospheric turbulence strength, especially in challenging 

situations such as strong turbulence, indicating that PCA method can be served as a 

better alternative in restoring the phase aberrations induced by atmospheric turbulence. 

These findings may help to reduce data dimensionality, i.e., using PCs of phase 

aberrations with less terms than traditional ZPs, which is useful for improving model-

based and deep learning based adaptive optics correction. 
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