

用于超短脉冲CO。激光的半导体光开关理论建模与数值分析

高月娟 陈飞 潘其坤 俞航航 李红超 田有朋

Modeling and numerical simulation of a semiconductor switching device applied in an ultra-short pulse CO₂ laser

GAO Yue-juan, CHEN Fei, PAN Qi-kun, YU Hang-hang, LI Hong-chao, TIAN You-peng

引用本文:

高月娟,陈飞,潘其坤,俞航航,李红超,田有朋.用于超短脉冲CO₂激光的半导体光开关理论建模与数值分析[J].中国光学, 2020, 13(3): 577-585. doi: 10.3788/CO.2019-0159

GAO Yue-juan, CHEN Fei, PAN Qi-kun, YU Hang-hang, LI Hong-chao, TIAN You-peng. Modeling and numerical simulation of a semiconductor switching device applied in an ultra-short pulse CO₂ laser[J]. *Chinese Optics*, 2020, 13(3): 577-585. doi: 10.3788/CO.2019-0159

在线阅读 View online: https://doi.org/10.3788/CO.2019-0159

您可能感兴趣的其他文章

Articles you may be interested in

声光偏转快调谐脉冲CO₂激光器实验研究

Experimental research on acousto–optic deflection rapid tuning pulsed CO_2 lasers

中国光学. 2019, 12(2): 355 https://doi.org/10.3788/CO.20191202.0355

高重频CO,激光干扰技术研究

Research on the interference technology of high repetition frequency CO_2 laser

中国光学. 2018, 11(6): 983 https://doi.org/10.3788/CO.20181106.0983

TDLAS直接吸收法测量CO。的基线选择方法

Selection of baseline method in TDLAS direct absorption $\rm CO_2$ measurement

中国光学. 2017, 10(4): 455 https://doi.org/10.3788/CO.20171004.0455

半导体超晶格声子激光器的研究进展

Progress of semiconductor superlattice phonon laser 中国光学. 2017, 10(4): 415 https://doi.org/10.3788/CO.20171004.0415

负曲率空芯光纤对飞秒超短脉冲光的压缩研究

Femtosecond pulse compression using negative-curvature hollow-core fibers 中国光学. 2019, 12(1): 75 https://doi.org/10.3788/CO.20191201.0075

10kW级直接输出半导体激光熔覆光源的研制与热效应分析

10 kW CW diode laser cladding source and thermal effect 中国光学. 2019, 12(4): 820 https://doi.org/10.3788/CO.20191204.0820 文章编号 2095-1531(2020)03-0577-09

用于超短脉冲 CO₂ 激光的半导体光开关 理论建模与数值分析

高月娟1,2,陈 飞1*,潘其坤1,俞航航1,2,李红超3,田有朋3

(1. 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033;

2. 中国科学院大学,北京 100049;

3. 中国人民解放军 31032 部队, 辽宁 沈阳 110020)

摘要:本文开展了基于半导体光开关技术实现超短脉宽 CO₂ 激光输出的物理机制研究。首先,在分析光生载流子过程及 载流子复合扩散机制的基础上,引入直接吸收、俄歇复合、等离激元辅助复合以及双极扩散等物理过程,并基于 Drude 理论,完善了半导体光开关理论模型。其次,利用该模型对两级半导体光开关产生超短 CO₂ 脉冲机制进行了数值 模拟及分析,结果显示该模型与国外最新实验结果一致,表明了模型的合理性与正确性。最后,利用该模型分析了控制 光脉冲宽度对两级光开关工作效率的影响,发现短的控制光脉冲更有利于精确、高效地截取出高质量的超短 CO₂ 脉 冲。本文研究证明半导体光开关法是实现超短 CO₂ 激光脉宽可调输出的有效技术途径。 关键 词:CO₂ 激光;半导体光开关;光生等离子体;超短脉冲

中图分类号:TN248.2 文献标志码:A doi:10.3788/CO.2019-0159

Modeling and numerical simulation of a semiconductor switching device applied in an ultra-short pulse CO₂ laser

GAO Yue-juan^{1,2}, CHEN Fei^{1*}, PAN Qi-kun¹, YU Hang-hang^{1,2}, LI Hong-chao³, TIAN You-peng³

(1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy

of Sciences, Changchun 130033, China;

2. University of Chinese Academy of Sciences, Beijing 100049, China;

3. Chinese People's Liberation Army 31032, Shenyang 110020, China)

* Corresponding author, E-mail: feichenny@126.com

Abstract: The physical mechanism are studied for ultra-short pulse CO_2 laser output realized by semiconductor switching technology. Firstly, based on the analysis of the generation, recombination and diffusion

收稿日期:2019-07-25;修订日期:2019-08-30

基金项目:国家自然科学基金(No. 61675200);国家科技重大专项 02 专项(No. 2018ZX02102001-002);激光与物质 相互作用国家重点实验室基金(No. SKLLIM1611);中国科学院青年创新促进会资助项目(No. 2017259) Supported by National Natural Science Foundation of China(No. 61675200); National Science and Technology Major Project 02(No. 2018ZX02102001-002); Open Fund Project of the State Key Laboratory of Laser and Material Interaction (No. SKLLIM1611); Youth Innovation Promotion Association (No. 2017259)

mechanism of laser-produced carriers, we introduce direct absorption, Auger recombination, plasmon-assisted recombination, an ambipolar diffusion process and according to Drude theory, we improve the theoretical model of semiconductor switching. Secondly, we simulate and analyze the generation of ultra-short CO_2 pulses by two-stage semiconductor optical switches employing this model. The results show that the model is in good agreement with the latest experimental results reported abroad, which implies the rationality and correctness of the model. Finally, the model is used to analyze the effect of control pulse duration on the efficiency of the two-stage switching. It is found that a short control pulse is more conducive to intercepting high-quality ultra-short CO_2 pulses accurately and efficiently. Semiconductor switching is an effective technique to realize the output of an ultra-short CO_2 laser with an adjustable pulse width.

Key words: CO₂ laser; semiconductor switching; laser-produced plasma; ultra-short pulse

1引言

长波红外超短 CO₂激光脉冲是研究固体表 面等离子体等的有力工具,还能产生高能量,高重 复频率的γ射线,同时,由于激光对粒子的加速效 果与激光波长的二次方成正比,超短脉冲 CO₂激 光在粒子加速领域也具有明显的优势^[1-4]。由于 普通的快放电和调Q技术只能获得数十至数百 纳秒脉宽的 CO₂激光输出,而 CO₂激光器又很难 满足锁模技术对增益线宽的要求,研究者们最终 通过光学自由衰减法(OFID)、Kerr 效应法和半导 体光开关法等对长脉冲或连续激光实现了超短脉 冲 CO₂脉冲输出^[5-7]。

与前两种方法相比,半导体光开关法具有输出稳定性高,便于装调,可实现皮秒甚至飞秒量级的脉宽及可控输出等独特优势,是获得脉宽可调超短脉冲 CO₂种子激光的最优选择。1975年,Alcock 等人利用半导体锗作为反射光开关,以波长为 0.7 µm 的红宝石激光产生的脉宽为 2 ns 的脉冲作为控制光,首次实现了纳秒级的短脉冲 CO₂激光输出^[8]。1997年,美国 Brookhaven 国家 实验室粒子加速测试小组(ATF)利用两级锗半导体光开关脉宽压缩技术实现了首台皮秒太瓦 CO₂激光器 Piter-I 的种子光输出^[9]。2003年,俄罗斯普通物理研究所 Apollonov 等人声明已利用 半导体反射光开关技术,实现了 175 ps 的 CO₂ 种子光脉冲输出,进而成功研制皮秒太瓦 CO₂激光 picasso-2,后续将继续增加透射开关以期实现脉

宽为 2~175 ps 的可调 CO₂ 光脉冲输出^[10]。

国外众多研究人员对锗晶体光生等离子体过 程进行了深入研究^[11-13],但在半导体锗光开关技 术实现超短脉宽输出方面的理论并不完善,尤其 是两级半导体光开关相结合的理论分析还未见完 整报道。1979年,Alcock等人对半导体锗光开关 的工作机理进行了研究,阐明了等离子体的产生 机制,指出在纳秒量级的时间尺度上,俄歇复合及 扩散在光生载流子生成过程中具有重要作用^[14]。 本文在此基础上,考虑了光生载流子密度对直接 吸收系数的影响,并通过深入研究发现,等离激元 辅助复合以及双极扩散对光开关工作过程及恢复 过程都有重要意义。

本文将直接吸收、俄歇复合、等离激元辅助 复合以及双极扩散的影响加入到半导体锗光开关 理论研究中^[15-16],建立了完整的反射开关理论模 型,同时借助此理论模型对两级光开关的工作过 程进行数值模拟分析,并研究了控制光脉冲脉宽 对两级光开关工作效率的影响,为基于超短半导 体光开关的超短脉冲 CO₂激光实验研究提供理 论依据。

2 半导体光开关的理论模型

半导体光开关法是利用半导体材料在强激光 照射下发生反射(透射)性能突变的原理实现的。 如图 1(a) 所示,当光子能量大于半导体禁带宽度 的超短控制激光脉冲辐射该半导体表面时,将在 半导体表面产生一层由电子-空穴对组成的等离 子体,当等离子体浓度达到一定程度时,被等离子体覆盖的半导体表面的反射特性将发生突变,此时,它对同步入射到等离子体区的 10.6 μm 的 CO₂激光的反射率将达到 90% 以上。控制激光停止辐照后,半导体表面等离子体逐渐复合,材料失去对 10.6 μm CO₂激光的反射性质,这样就实现了反射开关的光路选通。透射开关原理与反射开关炎似,它通过控制两束激光达到半导体开关的时间,使控制激光延迟于 10.6 μm CO₂激光到达半导体开关,控制激光辐照半导体使其透射性质发生突变,截断 10.6 μm CO₂激光的尾部,从而获得超短激光脉冲^[14]。

Fig. 1 Schematic diagrams of (a) reflection switch (b) transmission switch.

控制光脉冲进入半导体后存在 3 种吸收模 式:直接光吸收、间接光吸收和自由载流子吸收, 其中直接光吸收是在强激发脉冲辐射下使半导体 表面瞬时产生大量载流子的最主要途径。当入射 控制光脉冲光子能量hω。大于锗直接带隙能量 *E*₀时,半导体价带顶电子吸收一个光子能量跃迁 到Γ点附近的导带谷,导带谷电子再通过声子辅 助弛豫过程迅速散射到*X*和*L*等边谷,最终在价 带上留下一个空穴,在导带出现一个电子。

控制光辐照初始时刻半导体锗吸收系数为 α(N~0)~1.2×10⁴cm⁻¹,随着载流子密度的增加,直 接吸收系数不断减小;载流子密度在 0~10²¹cm⁻³ 时,吸收系数下降最快,若载流子密度继续增大, 吸收系数会出现负值,此时,半导体内的电子吸收 了能量为ħω₀的光子后会发生受激辐射,导致载流 子数减少。

直接吸收系数 a(N) 受晶体中载流子密度影响,可表示为^[17]:

$$\alpha(N) = \alpha_0 (1 - F_1 - F_2), \qquad (1)$$

其中:

$$\alpha_{0} = \frac{4e^{2}E_{0}}{3\sqrt{\varepsilon_{\infty}}c\hbar^{3}\omega_{0}} \Big[2(m_{0}^{-1} + m_{h}^{-1})^{-1}(\hbar\omega_{0} - E_{0})\Big]^{\frac{1}{2}}, \quad (2)$$

$$F_{1} = \left\{ 1 + \exp\left[\frac{E_{0} + (m_{0}^{-1} + m_{h}^{-1})^{-1} (\hbar\omega_{0} - E_{0}) - E_{F_{0}}}{T}\right] \right\}^{-1},$$
(3)

$$F_{2} = \left\{ 1 + \exp\left[\frac{\left(m_{0}^{-1} + m_{h}^{-1}\right)^{-1}\left(\hbar\omega_{0} - E_{0}\right) + E_{Fh}}{T}\right] \right\}_{(4)}^{-1}.$$

电子和空穴的准费米能级 *E_{Fo}* 和 *E_{Fh}* 随锗晶体内部载流子的浓度变化情况如下^[18]:

$$n_0 = N_o \exp\left(-\frac{E_o - E_{Fo}}{k_0 T}\right),\tag{5}$$

$$p_0 = N_h \exp\left(-\frac{E_{Fh} - E_h}{k_0 T}\right),\tag{6}$$

式中: 锗的导带有效态密度 N_o =1.02×10¹⁹ cm⁻³, 价 带有效态密度 N_h =5.64×10¹⁸ cm⁻³, n_0 和 p_0 分别为 锗晶体中自由电子和自由空穴浓度, 在本征锗中, 有 n_0 = p_0 =N, 其中 N 为锗晶体的光生载流子浓 度。半导体锗导带谷(Γ 点)电子有效质量 m_0 =0.1 m_e , 重空穴带有效质量 m_h =0.34 m_e 。考虑锗 能带中 Γ 处价带顶能量 E_h =0 eV, 则 Γ 处导带谷 能量即直接带隙宽度 E_o =0.805 eV^[19]。 k_0 为玻尔 兹曼常数, c 为光速。取电子空穴温度 T=300 K, 控制光入射光子能量 $\hbar\omega_0$ =1.17 eV。锗的高频介 电常数 ε_{∞} =16。

当控制光脉冲与半导体表面相互作用时会 在 α^{-1} 深度内产生电子空穴载流子。载流子的寿 命不是无限的,因而电子与空穴会穿过禁带重新 结合而继续演化。在半导体内,载流子浓度较低 时,仅俄歇复合发挥主要作用,取俄歇复合系数 $\gamma_{Auger} = 2 \times 10^{-31} \text{ cm}^6/\text{s}^{[20]},俄歇复合引起的载流子浓$ 度变化可表示为^[21]:

$$\frac{\mathrm{d}N_{\mathrm{Auger}}}{\mathrm{d}t} = -\gamma_{\mathrm{Auger}}N^3. \tag{7}$$

随着光生载流子密度的增加,表面等离子体 能量ħω_p的数量级将增加,并逐步与锗的禁带宽 度 E_g相当,导带电子将主要通过发射等离激元与 靠近价带顶部的空穴重新结合。随着载流子浓度 不断增大,等离激元辅助复合速率也不断增加,直 至二者速率相当,即刚刚进行了直接光学跃迁的 电子通过等离子体辐射与空穴复合,再次用于直 接吸收。在控制激光辐照下,等离激元辅助复合 引起的载流子复合速率的表达式为^[17]:

$$\frac{\mathrm{d}N_{\Gamma_{R}}}{\mathrm{d}t} = -\left(\frac{\sqrt{2}(k_{0}Tm_{0})^{3/2}}{\pi^{2}\hbar^{3}}\right)(P_{1}-P_{2})\Gamma_{R}, \qquad (8)$$

其中:

$$P_{1} = \int_{0}^{+\infty} y^{1/2} \left\{ 1 + \exp\left[y + (E_{0} - E_{F_{0}}) k_{0} T(\hbar \omega_{0})^{-2} \right] \right\}^{-1} dy,$$
(9)

$$P_{2} = \int_{0}^{+\infty} y^{1/2} \left\{ 1 + \exp\left[y + (E_{0} - E_{G}) / (k_{0}T_{L}) + \frac{1}{2} \ln\left(5m_{c}^{3/2} / m_{h}^{3/2} \right) \right] \right\}^{-1} dy,$$
(10)

等离激元辅助复合率可表示为:

$$\Gamma_{R} = \frac{2e^{2}\omega_{p}m_{h}^{3/2}}{3(m_{0}^{-1} + m_{h}^{-1})\varepsilon_{\infty}E_{0}\tau_{0}\left\{\left[(E_{0} + \hbar\omega_{p})^{2} + (\hbar/2\tau_{0})^{2}\right]^{1/2} + E_{0} - \hbar\omega_{p}\right\}^{1/2},$$
(11)

等离子体频率ω,有[19]:

$$\omega_p^2 = \frac{e^2 N}{\varepsilon_0} \left(\frac{1}{m_c} + \frac{1}{m_h} \right), \qquad (12)$$

式中: ε_0 为真空介电常数, L 和 X 处导带谷电子的 有效质量 $m_c=0.22m_e$, 间接带隙宽度 $E_G=0.664$ eV, 等离激元共振展宽h/ $2\tau_0 = 5.273 \times 10^{-21} s^{-1}$, 取晶格 温度 $T_L=300$ K^[22]。

在高密度载流子构成的等离子体中,双极扩散是主要扩散形式。根据 D. H. Auston 等人的研究结果^[20],取双极扩散系数*D* = 65 cm²/s,扩散引起的载流子的浓度变化可表示为^[19]:

$$\frac{\mathrm{d}N_{\scriptscriptstyle D}}{\mathrm{d}t} = \vec{\nabla} \Big(D\vec{\nabla}N \Big). \tag{13}$$

通常情况下,控制光脉冲的光斑会覆盖整个 光开关表面且远大于 CO₂ 光斑大小,因而认为等 离子体只向半导体内部(x方向)扩散,而无需考虑 向其他方向的扩散:

$$\frac{\mathrm{d}N_{\scriptscriptstyle D}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}x} \left(D \frac{\mathrm{d}N}{\mathrm{d}x} \right). \tag{14}$$

光生载流子在半导体表面会形成一层致密的 等离子体层。取控制光脉冲为高斯脉冲,设 t=0s时控制光脉冲刚好到达半导体表面,则在控 制脉冲辐照下,t时刻半导体表面的等离子体密度 N可表示为:

$$N(t) = \frac{\alpha(N)\xi \int_{0}^{t} \exp\left(-2\pi(\tau - t_{p}/2)^{2}/t_{p}^{2}\right) d\tau}{\hbar\omega_{0} \int_{0}^{t_{p}} \exp\left(-2\pi(\tau - t_{p}/2)^{2}/t_{p}^{2}\right) d\tau} ,$$

+ $N_{\Gamma_{R}}(t) + N_{\text{Auger}}(t)$ (15)

式中: t_p 为控制光脉冲宽度,吸收系数 a 可由式 (1)~式(6)得到,俄歇复合减少的等离子体密度 N_{Auger} 可由公式(7)得到,由等离激元辅助复合减少的 等离子体密度 N_{La}可由公式(8)~式(12)计算得 到。在小于 1 ns 的时间尺度上,扩散引起的等离 子体密度的减小可以忽略不计,即扩散主要在半 导体光开关恢复过程中发挥作用。

控制光辐照结束,等离激元辅助复合失效^[23], 在俄歇复合和双极扩散的作用下,半导体表面等 离子体密度变化可表示为:

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -\frac{\mathrm{d}N_{\rm D}}{\mathrm{d}t} - \frac{\mathrm{d}N_{\rm Auger}}{\mathrm{d}t}.$$
 (16)

等离子体密度大于临界密度 N_c =1.6×10¹⁹ cm⁻³ 时, CO₂ 光脉冲反射率发生突变。半导体表面等离子 体密度对反射率的影响可借助金属的 Drude 理论 计算。

被致密等离子体层覆盖的半导体表面介电系数*ε*有^[19]:

$$\varepsilon = \varepsilon_{\infty} - \frac{\omega_p^2}{\omega(\omega + i\Gamma_D)}, \qquad (17)$$

式中 $\Gamma_D=1.4\times10^{12}$ s⁻¹为能级展宽, ω 为CO₂光脉冲的光子频率,等离子体频率 ω_p 由公式(12)计算得出。

若 CO₂ 光脉冲垂直入射至半导体表面,则在 锗表面的反射率可借助菲尼尔反射公式及麦克斯 韦关系计算得到:若 CO₂ 光脉冲以布鲁斯特角入 射,在锗表面反射率则修正为下式^[11]:

$$R = \frac{\left(\varepsilon_{\rm r}\cos\theta - n_{\rm r}\right)^2 + \left(\varepsilon_{\rm i}\cos\theta - n_{\rm i}\right)^2}{\left(\varepsilon_{\rm r}\cos\theta + n_{\rm r}\right)^2 + \left(\varepsilon_{\rm i}\cos\theta - n_{\rm i}\right)^2},\tag{18}$$

其中 ε_r 和 ε_i 分别为介电系数的实部和虚部。式 中折射率的实部 n_r 和虚部 n_i 的表达式为:

$$2n_{\rm r}^2 = \varepsilon_{\rm r} - \sin^2\theta + \left(\left(\varepsilon_{\rm r} - \sin^2\theta\right)^2 + \varepsilon_{\rm i}^2\right)^{1/2}, \qquad (19)$$

$$2n_{i}^{2} = -\varepsilon_{r} + \sin^{2}\theta + \left(\left(\varepsilon_{r} - \sin^{2}\theta\right)^{2} + \varepsilon_{i}^{2}\right)^{1/2}.$$
 (20)

随着表面等离子体密度的增大, 红外光束只 能作为倏逝波存在于半导体内部, 即红外波可以 被完全反射。但在实际等离子体中, 碰撞会导致 倏逝波被吸收, 造成能级展宽, 从而导致光开关反 射率降低, 因而反射率无法达到 100%。

3 数值模拟及分析

3.1 半导体光开关的数值模拟

以脉宽为 20 ps, 能量密度为 0.6 mJ/cm², 波长为 1.06 μm 的高斯脉冲控制光为例, 依据前述理论模型, 对使用半导体光开关实现脉宽可调超短 CO₂ 脉冲输出过程进行数值模拟。

控制光辐照下,半导体表面等离子体密度随时间的变化情况如图2所示。初始时刻等离子体密度随时间呈线性增长;随着等离子体密度的增大,电子空穴复合速率增大,等离子体密度增长放缓。若此时控制光继续辐照半导体,等离子体密度继续增大直至达到最大值,载流子产生与复合速率相当。

设控制光停止辐照瞬间 *t*=0 ps 时的半导体表 面等离子体密度 *N*=3×10¹⁹ cm⁻³。控制光停止辐照 等离子体密度随时间变化情况如图 3 所示。

图 2 脉宽为 20 ps, 能量密度为 0.6 mJ/cm², 波长为 1.06 µm 控制光脉冲辐照下半导体表面等离子体密度随时间 变化曲线

Fig. 2 Surface density of plasma in germanium plotted as a function of time under the radiation of 1.06-μm controlpulse withpulse width of 20 ps and energy density of 0.6 mJ/cm².

- 图 3 控制光消失后表面等离子体密度随时间变化曲线
- Fig. 3 Surface density of plasma in germanium plotted as a function of time after the control pulse vanishing

从图中可以看出,在 t~90 ps 时,等离子体密 度下降到 1.6×10¹⁹ cm⁻³以下,当 t=180 ps 控制 光停止辐照时,等离子体密度下降至 N=7.66× 10¹⁸ cm⁻³。

设 CO₂ 光脉冲为单位能量矩形脉冲,且脉宽 远大于控制光脉冲,则 CO₂ 光脉冲垂直入射单级 反射光开关得到的反射脉冲如图 4 所示。初始时 刻, CO₂ 反射光脉冲能量为 0.36,此能量由未被控 制光脉冲辐照的锗片对 10.6 μm 激光的反射率 (*n*=4)决定;随后,半导体表层吸收控制光脉冲后 电子(空穴)处于能级较高的导(价)带,致使导带 谷或价带顶留下大量光学耦合态吸收 CO₂ 脉冲, CO₂ 光脉冲的反射脉冲能量下降到极小值 0.018 6; 处于高能级的电子空穴等离子体很快又通过声子 辅助弛豫跃迁到较低能级,从而填充了光学耦合 态,此时,CO₂ 光脉冲无法被吸收,反射脉冲能量 迅速增大到最大值 0.904 5。

图 4 CO₂ 光脉冲垂直入射反射光开关输出脉冲能量变化 曲线

Fig. 4 Calculated vertical reflected pulse energy plotted as a function of time

此脉冲波形与 1981 年 P.C.Hein 等人的实验 结果一致^[12]。P.C.Hein 等人在研究激发波长对锗 中光生等离子体反射率影响的实验中,以峰值功 率密度为7 MW/cm²,波长为 1.06 μm 光脉冲为控 制光,测得半导体锗表面对 10.6 μm 光脉冲的反 射率从 36% 开始减小,先降至极小值 20%,继而 迅速增大至最大值 94%。

若 CO₂ 光脉冲以布鲁斯特角入射光开关,则 反射脉冲能量变化的仿真结果如图 5 所示。结合 图 3 可知,在 $N\approx 1.6\times 10^{19}$ cm⁻³ 处反射脉冲能量开 始突变。反射 CO₂ 光脉冲能量最初为 0.011 5,最 低能量为 0.000 029,最高能量为 0.87。

图 5 与图 4 比较可以看出, 二者在初始阶段 差异较大。为了使半导体光开关输出的 CO₂ 光 脉冲具有较高的对比度(较低的背景光), 应尽可 能减小反射率突变之前反射的 CO₂ 光脉冲能 量。显然, 布鲁斯特角入射在增强对比度方面更 具优势。

美国 Brookhaven 国家实验室粒子加速测试 小组(ATF)在 1997 年采用能量为 5 mJ、脉宽为 20 ps 的 1.06 μm 的 CO₂ 光脉冲, 以布鲁斯特角人 射半导体锗反射开关,得到了150 ps 中红外脉冲^[12]。 图 6(彩图见期刊电子版)为单级半导体反射光开 关反射得到的 CO₂光脉冲仿真结果,其中红色曲 线为本文改进的理论模型计算结果,蓝色曲线为 A.J.Alcock 等人理论模型计算结果。二者比较可 以看出,红色曲线与实验结果更为接近。这是因 为在忽略等离激元辅助复合、双极扩散及直接吸 收系数变化条件下,计算得到的光开关表面等离 子体密度偏高,如图 7(彩图见期刊电子版)所示。

图 5 CO₂ 光脉冲以布鲁斯特角入射反射光开关输出脉冲 能量变化

Fig. 5 Calculated Brewster's angle reflected pulse energy plotted as a function of time

图 6 单级半导体反射开关输出的 CO₂ 光脉冲

图 7 中红色曲线为本文改进的理论模型计算 得到的等离子体密度随时间变化曲线,蓝色曲线 为 A.J.Alcock 等人的理论模型仿真曲线。显然, Alcock 的模型计算结果高于本文改进理论模型 结果,且光开关表面累积生成的等离子体密度越 大,此偏差越明显,当生成等离子体密度累积至 9×10¹⁹cm⁻³时,此偏差可达 3.5×10¹⁹cm⁻³。

图 7 单级半导体反射开关表面等离子体密度随时间变化 曲线

Fig. 7 Surface density of plasma in single-stage semiconductor switching plotted as a function of time

由图 6 可知,单个半导体反射光开关只能得到 150 ps 左右固定脉宽的 CO₂ 脉冲,若想将脉宽 缩短至几皮秒,则需要增加透射开关对反射得到的 CO₂ 光脉冲后沿进行剪切。

以脉宽为 20 ps, 能量密度为 0.6 mJ/cm², 波长 为 1.06 μm 的高斯脉冲作为两级光开关的控制光 脉冲, 则依次经过反射开关和透射开关后, 输出 CO₂ 光脉冲的数值模拟结果如图 8(彩图见期刊 电子版)所示。图中曲线分别为控制光脉冲相对 CO₂ 反射脉冲延迟 5 ps、10 ps、15 ps、20 ps 到达 透射光开关的仿真结果。

图 8 两级半导体光开关在 5、10、15、20 ps 延迟时间下 输出 CO₂ 脉冲能量

Fig. 8 CO₂ pulse energy outputs from two-stage semiconductor switching with time delay of 5, 10, 15 and 20 ps

由图 8 可知,两级半导体光开关得到的 CO₂ 光脉冲脉宽取决于延迟时间,且可实现的最短脉 宽取决于单级光开关反射脉冲上升沿的陡峭程 度,而与其脉冲后沿无关,上升沿越陡峭则两级光 开关可实现的最短脉宽越短。同时,两级光开关 得到的 CO₂ 光脉冲信号背景对比度取决于单级 光开关的最高反射率,最高反射率越高,则对比度 越高。

为保证两级开关输出 CO₂ 脉冲脉宽的可调 范围足够大,脉冲后沿需在一定时间内保持较高 的反射脉冲能量。接下来,将分析控制光脉冲脉 宽对单级反射开关效率的影响,以期在理论上提 高两级光开关精度及输出 CO₂ 光脉冲质量。

3.2 控制光脉冲宽度对光开关效率的影响

对不同脉宽的控制光脉冲辐照单级反射开关 结果进行数值模拟,控制光能量密度均为 ζ= 0.7 mJ/cm²,结果如图 9 所示。

通过图 9 可以明显看出,相同能量密度下,控制光脉宽越短,反射脉冲的上升沿越陡峭,反射脉冲越接近矩形脉冲。陡峭的上升沿有利于两级光 开关输出更短的 CO₂ 脉冲,而反射脉冲接近矩形脉冲能保证两级光开关输出的 CO₂ 脉冲脉宽可 调范围更大。

图 9 脉宽为 6、10、30、60 ps 的控制光脉冲辐照单级反射开关得到 CO₂ 脉冲能量

Fig. 9 CO₂ pulse energies obtained by using controlled light pulse with pulse widths of 6, 10, 30, 60 ps to radiate single–stage reflection switch

图 10 左图为控制光脉宽为 6 ps, 透射开关处时间延迟为 3 ps下的仿真结果, 图 10 右图为控制光脉宽为 60 ps, 透射开关处时间延迟为 30 ps

下的仿真结果。可以明显看出, 左图在输出 CO₂脉宽被压缩至仅 3 ps 的情况下, 峰值能量密 度依旧可以保持在 0.9 以上, 而右图输出脉冲脉 宽被压缩至 30 ps 时,能量密度已有所下降。因此,采用短控制光脉冲控制两级半导体光开关更容易实现高对比度超短脉宽 CO₂ 光脉冲输出。

图 10 脉宽分别为 6 ps(左) 和 60 ps(右) 控制光脉冲辐照两级反射开关输出 CO2 脉冲能量

Fig. 10 CO_2 pulse outputs from two-stage semiconductor switching radiated by control pulse with pulse duration of 6 ps (left) and 60 ps (right), respectively.

4 结 论

将直接吸收、俄歇复合、等离激元辅助复合 以及双极扩散的影响加入到半导体锗光开关理论 研究中,结合 Drude 理论,完善了半导体光开关的 理论模型,利用该理论模型对两级半导体光开关 产生超短 CO₂脉冲的机制进行数值模拟及分 析。研究发现,单级光开关反射脉冲上升沿,即单 级光开关响应时间,对两级半导体光开关的影响 最大;将 Alcock 模型与本文改进模型的仿真结果 做对比,并与国外实验结果比较发现,改进模型数 值模拟结果与国外实验结果的一致性更好。运用 理论模型研究了不同控制光脉冲宽度对单级反射 光开关以及两级光开关效率的影响。结果表明: 相同能量密度下,控制光脉冲脉宽越短,单级反射 开关反射脉冲的上升沿越陡峭,且越接近矩形脉 冲;对于两级半导体光开关,短脉宽控制光脉冲更 容易实现高对比度的超短脉宽 CO₂ 光脉冲输 出。本研究结果对脉宽可调超短 CO₂ 光脉冲种 子光的实现以及固体表面等离子体和光化学等的 研究有一定指导意义。

参考文献:

- [1] POGORELSKY I V, YAKIMENKO V, POLYANSKIY M, et al.. Ultrafast CO₂ laser technology: application in ion acceleration[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 6(20): 67-70.
- [2] PIGEON J J, TOCHITSKY S Y, GONG C, et al.. Supercontinuum generation from 2 to 20 μm in GaAs pumped by picosecond CO₂ laser pulses[J]. Optics Letters, 2014, 39(11): 3246-3249.
- [3] BABZIEN M, POGORELSKY I V, POLYANSKIY M. Design and applications of the Brookhaven 100 TW CO₂ laser[C]. *Research in Optical Sciences, OSA*, 2014: JW2A.25.
- [4] SIEMON C, KHUDIK V, AUSTIN Y S, et al.. Laser-seeded modulation instability in a proton driver plasma wake field accelerator[J]. *Physics of Plasmas*, 2013, 20(10): 103111.
- [5] KESSELRING R, KALIN A W, SCHOTZAU H J, et al.. Picosecond CO₂ laser-pulse generation and amplification [J]. IEEE Journal of Quantum Electronics, 1993, 29(3): 997-1005.
- [6] HABERBERGER D, TOCHITSKY S, JOSHI C. Fifteen terawatt picosecond CO₂ laser system[J]. Optics Express,

2010, 18(17): 17865-17875.

- [7] 谢冀江,李殿军,张传胜,等. 声光调Q CO2激光器[J]. 光学 精密工程, 2009, 17(5): 1008-1013.
 XIE J J, LI D J, ZHANG CH SH, *et al.*. Acousto-optically Q-switched CO2 laser[J]. *Optics and Precision Engineering*, 2009, 17(5): 1008-1013. (in Chinese)
- [8] ALCOCK A J, CORKUM P B, JAMES D J. A fast scalable switching technique for high-power CO₂ laser radiation[J]. *Applied Physics Letters*, 1975, 27(12): 680-682.
- [9] POGORELSKY I V, BEN-ZVI I, BABZIEN M, *et al.*. First picosecond terawatt CO₂ laser[J]. *Proceedings of SPIE*, 1998, 3683: 15-24.
- [10] APOLLONOV V V, KAZAKOV K K, PLETNYEV N V, et al.. Picosecond terawatt CO₂ laser system: picasso-2[J]. Proceedings of SPIE, 2003, 5120: 291-296.
- [11] JAMISON S A, NURMIKKO A V, GERRITSEN H J. Fast transient spectroscopy of the free-carrier plasma edge in Ge[J]. *Applied Physics Letters*, 1976, 29(10): 640-643.
- [12] HEIN P C, GALLANT M I, VAN DRIEL H M. Influence of excitation wavelength on the reflectivity of photogenerated plasmas in germanium [J]. *Solid State Communications*, 1981, 39(4): 601-604.
- [13] GALLANT M I, VAN DRIEL H M. Infrared reflectivity probing of thermal and spatial properties of laser-generated carriers in germanium[J]. *Physical Review B*, 1982, 26(4): 2133-2146.
- [14] ALCOCK A J, CORKUM P B. Ultra-fast switching of infrared radiation by laser-produced carriers in semiconductors[J]. *Canadian Journal of Physics*, 1979, 57(9): 1280-1290.
- [15] 董文甫, 王启明, 杨沁清, 等. 锗硅量子阱中近带边光跃迁的理论和实验研究[J]. 发光学报, 1996, 17(4): 311-316. DONG W F, WANG Q M, YANG Q Q, *et al.*. The theoretical and experimental research of the near-band-gap optical transition in SiGe/Si quantum well[J]. *Chinese Journal of Luminescence*, 1996, 17(4): 311-316. (in Chinese)
- [16] 张希清,秦伟平,赵家龙,等. 用非相干光时间延迟四波混频测量TiO₂超微粒子的扩散系数及载流子复合时间[J]. 发光学报, 1993, 14(3): 231-236.
 ZHANG X Q, QIN W P, ZHAO J L, *et al.*. Measuring carrier recombination time and diffusion coefficient of TiO₂ using time-delayed four-wave mixing with incoherent light[J]. *Chinese Journal of Luminescence*, 1993, 14(3): 231-236. (in Chinese)
- [17] ELCI A, SCULLY M O, SMIRL A L, *et al.*. Ultrafast transient response of solid-state plasmas. I. Germanium, theory, and experiment[J]. *Physical Review B*, 1977, 16(1): 191-221.
- [18] 刘恩科,朱秉升,罗晋生.半导体物理学[M].7版.北京:电子工业出版社,2008.
 LIU E K, ZHU B SH, LUO J SH. *Semiconductor Physics*[M]. 7th ed. Beijing: Publishing House of Electronics Industry, 2008. (in Chinese)
- [19] ZIMAN J M. Principles of the Theory of Solids [M]. Cambridge: Cambridge University Press, 1972.
- [20] MALVEZZI A M, HUANG C Y, KURZ H, *et al.*. Time-resolved spectroscopy of plasma resonances in highly excited silicon and germanium[J]. *MRS Proceedings*, 1985, 51: 201.
- [21] AUSTON D H, SHANK C V, LEFUR P. Picosecond optical measurements of band-to-band Auger recombination of high-density plasmas in germanium [J]. *Physical Review Letters*, 1975, 35(15): 1022-1025.
- [22] 米宝永. 锗的红外折射率精密测量[J]. 光学 精密工程, 1998, 6(4): 123-126.
 MI B Y. Precision measurement of the infrared refractive index for germanium sample[J]. Optics and Precision Engineering, 1998, 6(4): 123-126. (in Chinese)
- [23] RASOLT M, MALVEZZI A M, KURZ H. Plasmon-phonon-assisted electron-hole recombination in silicon at high laser fluence [J]. *Applied Physics Letters*, 1987, 51(26): 2208-2210.

作者简介:

高月娟 (1995—), 女, 山东东营人, 硕 士研究生, 2017 年于中国海洋大学获 得学士学位, 现为中国科学院长春光 学精密机械与物理研究所光学工程硕 士研究生, 主要从事重复频率超短脉 冲 CO₂ 激光器方面的研究。E-mail: gyjsnf@163.com

陈 飞(1982—),男,河南南阳人,研 究员,博士生导师,2011年于哈尔滨 工业大学获得博士学位,现工作于中 国科学院长春光学精密机械与物理研 究所激光与物质相互作用国家重点实 验室,主要从事高功率气体激光器及 其应用方面的研究。E-mail: feichenny@ 126.com