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Abstract: A differential generalized Jones matrix method (dGJM) was recently introduced by Ortega-
Quijano and colleagues to derive the GJM for modelling uniaxial and biaxial crystals with arbitrary orienta-
tions in laboratory coordinate systems. Later, we propose an eigen generalized Jones matrix method to simu-
late the phase and polarization of fully polarized light propagating in an anisotropic crystal when the optical
axis orientations and light directions are both arbitrary. In our method, we use physics that are equivalent in
principle to those of Ortega-Quijano, but we use a modified mathematical technique. We introduce the eigen
generalized Jones matrix in the intrinsic coordinate system to precisely calculate the phase and polarization of
the light, which overcomes the limitations of the differential generalized Jones matrix method. The simula-
tion results indicate that our method can be used to calculate the polarization distribution, regardless of how
the light beam and optical axis positioned, or whether the light beam has a vortex.
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1 Introduction

Jones calculus is a simple and general method
for modelling several optical phenomena, such as
those of liquid crystal displays!'?, diffraction grat-
ings®, Solc filters*, holographic imaging”*),
quantum communication ™ in classical and quantum
optical fields, radio telescope image calibrators!”,
radio polarimeters!'! in astronomical observation,

U2 human brain tissues,

human retinal imaging
and biological specimens'! in the biomedical ima-
ging. Moreover, when applied in three dimensions,
the Jones vector changes into the generalized Jones
vector!"™! and can be used to describe light propagat-
ing through a high-numerical-aperture focus lens!,
light interacting with nanoparticles!'”, and optical
coherence tomography!*.

Jones matrix calculus was first proposed by R.
Clark Jones in the 1940s to describe the change in
phase and polarization in a matrix or in vector forms

11t is a basic and widely used

for media or light
calculation method for describing the polarization of
light transmitting in media. However, it has only
been applied to normally or paraxially incident light.
Zhang et al. introduced a Generalized Jones Vector
(GJV), also called a 3D Jones vector to describe the
polarization effect of light and optical media or sys-
tems”**, Yeh et al. extended the method to treat the
transmission of off-axis light through an anisotropic
medium with an arbitrary optical axis orientation™,
Azzam et al. invented the Generalized Jones Matrix

(GIM) to describe the interaction between the fully

s et

polarized beam and its linear transformations in
three dimensions®. Recently, Ortega-Quijano and
colleagues proposed the differential Generalized
Jones Matrix (dGJM) method to derive the GIM to
model uniaxial and biaxial crystals with arbitrary
orientations”’ . However, our repeated and precise
calculations showed that the dGJM method is not
applicable to samples with an arbitrary optical axis
orientation or when the light is obliquely incident.
The reason for this limitation is that the dGIM
method tries to get the GJM of an arbitrarily ori-
ented anisotropic crystal in the laboratory coordin-
ate system through the rotation of the GJM consist-
ing of the principle index in principle coordinate
system. However, when the light has oblique incid-
ence, the principle index should be replaced by the
eigen refraction index, which can be calculated with
the n-face equation of the crystal and the direction
of the beam in the principle coordinate. Meanwhile,
the eigen refraction index can be used to calculate
the phase difference of the two eigen polarization
lights.

In this paper, we propose a new method for cal-
culating the phase and polarization of fully polar-
ized light propagating in an arbitrarily oriented an-
isotropic crystal. The method overcomes the limita-
tions of the dGJM method. In Sec. 2, an eigen Gen-
eralized Jones Matrix (eGJM) is derived that can be
used in uniaxial and biaxial crystals. In Sec. 3, the
eGJIM is extended to describe the light refraction in
the crystal interface. Then, we use the proposed
method to simulate the polarization distribution of

the cross-section for a light beam with a vortex and


http://dx.doi.org/10.3788/CO.2019-0163
http://dx.doi.org/10.3788/CO.2019-0163

3 W]

SONG Dong-sheng, ef al. : Eigen generalized Jones matrix method 639

compare the results to an image obtained in an ex-

1129301

perimen The results demonstrate that our

method is effective.

2 Eigen generalized Jones matrix me-
thod

2.1 Eigen generalized Jones matrix method

To overcome the limitations of the dGJM
method, three coordinate systems are necessary: the
laboratory coordinate system (S), which describes
the position of the crystal; the principal axis co-
ordinate system (Z), which describes the orientation
of the optical axis; and the eigen coordinate system
(B), which describes the direction of the polarized
beam's. In addition, only one eigen coordinate system
is required when the light beam transfers in the crys-
tal without any refraction and that only two eigen
coordinate systems are required for the two differ-
ent wave vectors. These coordinates are illustrated

in Fig. 1 (color online).

Fig. 1 Schematic diagram of the three coordinate systems.
The black, blue, and red axes represent the laborat-
ory, principal, and eigen coordinates, respectively.

zy and z, are the optical axes.

We define the rotation relationship between
them as Z=T,S and B=T}S, where T, and T} are the

rotation matrices, which can be calculated using
Euler rotation matrix theory.

To obtain the eigen dGIM, we first calculate
the eigen indices n; and n, from Eq. (1) and Eq. (2)

using the principal coordinates:

K =T,k, QYD)

(K, + K, +K.)K,n’+ K, n>+K.’n>)
-’K,’n’(n’+n’)-n’K,’n’(n>+n’)
-’K.n’(n’+n’)+n’n’n’ =0, 2
where n is the refractive index, K; is the principal
wave vector, and n,, n, and n, are the principal in-
dices of the crystal. Eq. (1) is used to rewrite the
transporting direction of the eigen light beam in Z,
which can directly be used in Eq. (2) and the index
face equation in Z.
Second, we can directly write the eGIM in B:
exp(—id/2) 0 0
G,= 0 exp(i6/2) 0 |, (3)
0 0 0
where 6=2n(n,d,—n,d,)/A describes the phase differ-
ence. d; and d, are the propagation path lengths of
the wave vector for the two eigen lights in the crys-
tal. They must be calculated with different refrac-
tions at oblique incidents and identical refrations at
normal incidents.
According to the relationship between B and S,
the GIM in S is

G, =T;G,T,, 4)

where Tj is the transfer matrix between the eigen
coordinates and laboratory coordinates. The electric
displacement vector D' of the output light beam can

be expressed as

D =G,D,=T;G,T,D,. (5)

The electric field vector E’ can be expressed as

E =(T,)'s,T,)"'T;'G,T,T, ¢,T,)E,, 6)

where T is the transfer matrix between the princip-
al coordinates and laboratory coordinates and &, is
the polarizability tensor in principal coordinates

and can be written as
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The physical meaning of Eq. (6) is easily un-
derstood. E; represents the electric field vector of a
light beam in laboratory coordinates and will be
transferred to the electric displacement vector D in
the same coordinates by the left multiplication of the
factor (T, 'e,T,). Then, T will convert D to eigen
coordinates. G will change the phase of light,
which will finally be reversed to an electric field
vector form in laboratory coordinates.

2.2 Uniaxial crystal

We use the eGJM method to calculate the po-
larization distribution of the light beam in anisotrop-
ic crystals.

(1) Beam direction perpendicular to the optical
axis

Consider a situation where the direction of the
beam is perpendicular to the optical axis. The prin-
cipal coordinate system is then in the superposition
of the eigen coordinate system; thus, T5=T,. The re-

fractive indices for the eigen beams are exactly the

same as the principal index, n, and n,. Here, the
eGIM is
G, = (TZ_ISZTZ)_]TBul_]GBTB(TZ_IaZTZ)
= TZ_ISZ_IGBulsZTZ7 (8)
where
exp(—id/2) 0 0
G, = 0 exp(i6/2) 0], §=2n(n,—n,)d/A.
0 0 0
(9

In this case, there is no walk-off angle between

the two eigen beams. Assuming the initial polariza-
tion direction is 45° from the x-axis, according to the
eGIM method, we can calculate the polarization
after a length d. The polarization distribution of the
cross-section of the beam is presented in Fig. 2,
which shows the change in polarization from the
original direction to the opposite polarization direc-
tion.

(2) Arbitrary angle between the beam and op-
tical axis

When the angle between the beam and optical
axis is arbitrary, the eigen refractive indices for the
extraordinary ray will no longer be n,, but they
should be calculated from Eq. (10)5%.

il (10

ne(g) = . 9 1/2
[n2sin 0 + n*cos*d]

Then, the eGJM for the electric displacement

vector D is
GSD = (TZ_]SZTZ)_I(T;IGBuZTB)(TZ_ISZTZ)’ (D
where
exp(=id'/2) 0 0
Gy, = 0 exp(i0'/2) 0f, & =2n(n,—n,)d/A.
0 0 0
(12>

For the extraordinary beam, the array direction
is not the same as the wave vector direction, so the
eGJM for the electric field vector E should be
changed to

G, = (T, '&,T,)(T,,G,T,,+ T, G, T, )T, &T),),

(13)
where
exp(=is,) 0 O
G, = 0 0 0,6 =2nnd /A, (14
0 0 0
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Fig. 2 Spatial distributions of the polarization state. (a) Original linear polarization. (b) Left(right) polarization. (c) Circular
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polarization. (d) Right(left) polarization. (e) Opposite linear polarization.
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0 0 0 beam transfers a distance of 1 cm. Thus, there will
G, = 8 exp(o—zéz) 8 s 0, = 2angd; /A (15) be an overlapping region if the size of the beam

The walk-off angle should be calculated be-
fore we obtain the polarization distribution of the
cross-section of the beam. For a potassium dideu-
terium phosphate (KDDP) crystal, n,=1.494 2,
n,~1.460 3. The change in walk-off angle with 6,
from 0 to m/2 is shown in Fig. 3, where the angle
between the beam direction and optical axis direc-
tion is 4,.

Figure 3 indicates that the maximum value of
the walk-off angle is 0.023 3 rad, equal to 1.335°,
and the corresponding refractive index is n.(0)=
1.476 96. The walk-off distance is 0.023 3 cm if the

cross-section is larger than 0.023 3 cm. The polariz-
ation distribution for the overlapping region is
presented in Fig. 4. The light polarization for the
overlapping region could be elliptical, circular, or
linear. Meanwhile, the overlapping region decre-

ases in size with the transfer length.

p/rad

1.
Olrad 1.5

Fig.3 Change in walk-off angle with 6,.
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Fig. 4 Spatial distributions of the polarization state with a right direction walk-off effect. (a) Original linear polarization. (b)
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Left (right) polarization. (c) Circular polarization. (d) Right (left) polarization. (¢) Opposite linear polarization.

2.3 Biaxial crystal

In biaxial crystals, there is always a walk-off
effect for the light beam so the transmission of light
is in the direction of the optical axis and its conical
refraction effect is not considered a special situation.
The eigen refractive indices for the two eigen linear
polarization light beams can be calculated from Eq.
(1) and Eq. (2). The eGJM for the electric field vec-

tor can immediately be written as

Gy = (T, 'e,T,) ' (T,,Gy Ty + T,,G T )T, 'e,T)),

(16)
where

[ exp(=io}) O O ]

G, = 0 0 0|,& =2nnd /A, AD
0 0 0|
[ 0 0 0 |

G, =| 0 exp(-io)) O |, 0, =2an,d,/A. (18)
| 0 0 0 |

The eGJM for the electric displacement vector

can be written as

G, = (T, '&,T,)"(T,'G,T)T, 'e,T,), (19

where

exp(—io”/2) 0 0
G, = 0 exp(i6”/2) 0
0 0 0

, 0" =2n(n,—n,)d/A.

Qo

To calculate the polarization distribution of the
cross-section of the light beam, we also need to cal-
culate the walk-off angle. We define the light direc-
tion as (0, ¢) in principal coordinates, and the
change in walk-off angle is shown in Fig. 5 (Color
online).

In Fig 5 6 is the polar angle and ¢ is the azi-
muth angle. Figures 5(a) and 5(b) are related to the
walk-off angle for the light beam with the smaller

and larger eigen refractive indices, respectively.
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There is no walk-off effect for any eigen light when
the light beam transmits in the direction of the axis,
corresponding to 6=0, or 6=n/2 and ¢ is 0, /2, =,
3w/2. Only one eigen light beam exhibits a walk-off
effect when ¢ is 0, n/2, n, 3n/2 while @ is arbitrary,
or when 6=n/2 while ¢ is arbitrary. There are two

singularity points when 6=0.304 and ¢ is 0, @, cor-

/rad
(a) @/ra 6
o 2 0.020
0.02 | 0.015
el -
g 0.01 . 0.010
§ "::::i¥—ﬁ£ﬁ I
0 — 0.005
0.5 /
1.0 oo
O/rad L5 2o

responding to the optical axis direction. Similar to
the uniaxial crystal, the polarization distribution of
the cross-section of the light beam is presented in
Fig. 6 (Color online). The movement of the differ-

ent polarizations toward the upper-right quar-

ter represents the array direction.

Fig. 5 Change in walk-off angle with (6, ¢)
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Fig. 6 Spatial distributions of the polarization state with a upward-right direction walk-off effect. (a) Original linear polariza-

tion. (b) Left(right) polarization. (c) Circular polarization. (d) Right(left) polarization. (¢) Opposite linear polarization.

3 Extended eigen generalized Jones
matrix

We extend the eGIM to a more general case of
refraction on the interface. Figure 7(a) (Color on-
line) shows the phase difference when the light
beam transfers through the anisotropic crystals,
where the blue line represents ordinary light, the red
line represents the direction of the energy flow of
the extraordinary light, and the pink line represents
the wave vector direction. We now calculate the
phase difference:

0,—06,=n,-d/cosO,+n-EF -tanf,—n,-d/ cos®6,
=(n,cosl, —n,cosb,)d, Q1)

0,—0,=n,-dcos(8,—0,)/cosO,+n-AF -tan®,
—n,-d/cosb, = (n,cos,—n,cosb,)d.
Q2

The results indicate that the two phase changes
are identical. They are equivalent to either the en-
ergy flow direction or the wave vector direction of
the extraordinary light. Figure 7(b) shows the differ-
ent polarization directions at the interface. For the
anisotropic crystal, the birefringence must be con-
sidered. Yeh" already provided a method to calcu-
late the polarization of the output light beam. As-
suming the thickness of the crystal is d, we know
the optical distance difference is (n.,cosf,—n,cos6,)
from Eq. (21) and Eq. (22); thus, the output light
beam can be expressed as

AL =(1,T,e ™" +1,Te")e ™"

A/p — (tpsToefidl/Z + tPSTeeidl/z) e—iéz/z’ (23 )

where ¢,=(n,cos8,—n,cosb,)dw/c and d,=(n,/cosb,+
ny/cos,)dw/c. Ignoring the phase factor e™”, we

have the following matrix form:
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(@

(b)

Fig. 7 Phase difference and polarization. (a) Phase difference of the refracted light beam in birefringent crystals. (b) Polariza-
tion of reflection and refracted light beam at the interface in birefringent crystals.

A L, t.\(e®” 0 \(t, t.,\[A.
()= 20 )0 )
Q4
B

ep

0 0 O o 0

E'. 0
In applications, we calculate the phase distribu-

tion for a vector vortex light beam with a singular-

ity transference through the KDP crystal and com-

. A t. t. 0)(e™? 0
E|=T|A,|=T|1, 1, O] 0 e~

If we extend Eq. (24) to three dimensions, we
have

0\(t, £, O A, E,
t. t. O|T'T|A, |[=G|E,]|
0

0 0 0 E

(25

[N )

pare the simulation results to the experimental res-
ults of Flossmann*, as shown in Fig. 8 (Color on-

line).

Fig. 8 (a) Experimental image and (b) simulation results of proposed method.

The black squares indicate the singularities of
the light beam. The colored circles represent the cir-
cular polarization state points and the yellow lines
represent the linear polarization states in the cross-
section of the output vector beam. There is a small
difference in the bottom and middle areas between
these two images because of experimental error and

simulation method. However, the polarization distri-

bution and positions of the special points are almost
identical, which clearly indicates that the eGJM

method is practical.

4  Conclusions

In this study, we analyzed the GJM method,

which provides a convenient way to establish the
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Jones matrix for anisotropic crystals whose optical
axis is oriented arbitrarily in three-dimensional
space. We proposed the eGJIM method to overcome
the limitation of the dGJM, which is effective only
when the light has perpendicular incidence and the
optical axis is perpendicular or parallel to the incid-
ence face. The calculation results indicate that our
method can be used to construct the Jones matrix
when the directions of the light beam and optical ax-
is are both arbitrary. The eGJM can also be exten-
ded to include cases where the light refraction is on
the interface when light travels through the crystal,
so that its polarization and phase can be precisely

calculated. Finally, we use this method to simulate

S 3CHk:

the polarization distribution of the cross-section for
a fully polarized light beam with a vortex transmit-
ting through an anisotropic crystal, and we compare
the results to those of an experiment. The results
demonstrate that our method is effective. Thus, the
¢GJM method has potential applications in simulat-
ing the space evolution of vector beams. Optional
optical crystal instruments can be calculated based
on the requirement beams. Factors like the electro-
photon effect, magnetic-photon effect and optical
rotation should be further studied to fully develop
like light

propagation in crystals in electromagnetic fields.

the eGJM method for applications
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