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Abstract; Multiwavelength erbium-doped fiber lasers can be applied to many fields, such as wavelength divi-
sion multiplexing optical communication and others attracting considerable attention. To meet the requirements
of different applications, we propose a compact dual-wavelength continuous-wave erbium-doped fiber laser
based on nonlinear amplifying loop mirror. An all-polarization-maintaining fiber cavity is adopted in which
there are only three intracavity devices besides fiber itself;a wavelength division multiplexer, a 2 x2 fiber cou-
pler and a fiber reflector. The intensity-dependent loss effect induced by the nonlinear amplifying loop mirror
is used to equalize the intensity in the cavity. The input laser with higher power suffers a higher loss than the
one with lower power. This feature can be used to suppress mode competition and achieve stable multiwave-
length oscillation. With a pump power of 260 mW, dual-wavelength erbium-doped fiber laser can be a-
chieved, with wavelengths of 1 560.5 nm and 1 563. 2 nm, respectively. The side-mode suppression ratio is
46. 8 dB. As pump power increases, the laser can operate in single-, dual- and triple-wavelength regions in
proper order. As the multi-wavelength lasing oscillation is a balance between intensity-dependent loss and
mode competition, the intensity change breaks the original balance state, resulting in the change in number
and wavelength of lasing lines. This laser is simply structured and easy to operate. It can have applications in
many fields.
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1 Introduction

In recent years, multi-wavelength Erbium-
Doped Fiber (EDF) lasers have attracted a large a-

mount of attentions' '™’

. Compared with methods u-
sing a large number of single-wavelength lasers,
multi-wavelength lasers can reduce the complexity,
development and maintenance cost of lasers. They
also have broad application prospects in wavelength-
division multiplexing free-space optical communica-
tion and optical fiber communication systems. Multi-
wavelength EDF lasers are also useful in fiber optic
sensing, fiber device inspection, optical signal pro-
cessing and microwave signal generation.

Since the uniform broadening effect of an EDF
causes mode competition, EDF lasers generally can-
not achieve stable multi-wavelength operation at
room temperature. In order to achieve multi-wave-
length operation, S. Yamashita et al. used liquid ni-
trogen to cool an EDF to 77 K and the gain spectrum
width of the EDF reduced to about 1 nm, ultimately

]

achieving stable multi-wavelength output'®’. Howev-

er, this cryogenic cooling method requires strict ex-
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perimental conditions, which is not conducive to
practical applications. In order to achieve stable
multi-wavelength output at room temperature, vari-
ous methods have been proposed to suppress mode
competition in EDF lasers in addition to using a du-
EDF with a

al-core

effect'”’ .

non-uniform  broadening
The most common method is introducing

comb spectral filter in the laser cavity, such as Fab-

ry Perot etalon™*""! | Mach Zede interferometer'"' ™" |

15]
, among

specially designed fiber Bragg grating'"*
others. Using comb filter can overcome the uniform
broadening effect of an EDF and achieve stable
multi-wavelength operation. In addition to comb fil-
ters, people have used nonlinear fiber effects''®""’ |
cascaded or arrayed fiber Bragg gratings'*** | polar-

23-24

ization hole burning effects "’ and spatial mode

25 27 . .
I to successively achieve a

beat frequency effects'
multi-wavelength EDF laser. In recent years, the in-
tensity-dependent loss mechanisms have been intro-
duced into EDF lasers, such as nonlinear polariza-
tion rotation effect'®* | Nonlinear Optical Loop

Mirror ( NOLM ) '

is used to suppress mode competition and achieve

The intensity-dependent loss

multi-wavelength simultaneous oscillation. However,
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most of these intensity-dependent loss mechanisms
combining with other mechanisms or manual adjust-
ment devices are needed to achieve stable multi-
wavelength operation. This makes the structure of
the light source more complicated and inconvenient
to use.

In this paper, a dual-wavelength continuous-
wave EDF laser using a Nonlinear Amplifying Loop
Mirror(NALM) is constructed. The laser adopts an
all Polarization-Maintaining( PM) fiber structure and
has high environmental stability. In addition to the
optical fiber, there are only three devices in the cav-
ity : Wavelength Division Multiplexer( WDM) , 2 x2
fiber coupler, and fiber reflector. The structure is
simple. With the pump power of 260 mW , the laser
operates in dual-wavelength region with output wave-
lengths of 1 560.5 nm and 1 563.2 nm, respective-
ly, and the side mode suppression ratio is 46. 8 dB.
It has also been observed in the experiment that the
laser can operate in single-, dual- and triple-wave-

length states as the pump power increases.

2 Experimental Setup and Working

Principle

The experimental setup of the dual-wavelength
EDF laser is shown in Fig. 1. A 2 x2 PM fiber Opti-
cal Coupler( OC) was used as the junction of the la-
ser and the splitter ratio of OC was 40:60. The
NALM is formed with a piece of PM EDF ( PM-ESF-
7/125). A 976 nm Laser Diode (LD) delivering a
maximum output power of 800 mW is used as a
pump source. The pump laser is coupled into the
cavity through a standard PM 976/1 550 nm WDM.
The linear arm of the cavity consists of a PM fiber.
High Reflector (HR). The laser beam transmitting
through the NALM is utilized as Output( OP). Since
the uniform broadening effect of the EDF causes
mode competition, the EDF laser generally cannot a-
chieve stable multi-wavelength continuous-wave op-

eration at room temperature. The NALM in this

scheme can suppress the mode competition.

Ll EDF

HR

Fig. 1  Experimental setup of dual wavelength EDF la-
ser; LD, laser diode; WDM, wavelength divi-
sion multiplexer; EDF, Er-doped fiber; OC,
optical coupler; HR, high reflector; OP, output
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Fig.2 is a schematic diagram of the NOLM.
The incident laser beam light passes through the OC
and is split into two beams, transmitting in opposite
directions. The splitting ratio of the coupler is a:

(1 —a), where 0 <a=<0.5.

Fig.2  Schematic diagram of a nonlinear optical loop

mirror
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The two beams pass through the fiber loop in
clockwise and counterclockwise directions, then
each of them is divided into two beams by the cou-
pler, interference occurs at the input and output
ports of the NOLM to form the reflected laser and
transmitted laser. Transmittance of NOLM is defined

to the in-
]

as the ratio of the output laser intensity /

out

put laser intensity /,,, which is expressed as'*

T=1

out

in

/I,=1=-2a(1l —a)(1 +cosAy) ,(1)
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where Ay is the phase difference accumulated when
the two beams transmitted in the opposite direction of
the fiber loop, and can be expressed as Ay = (Al x
2an,L) /A =((1=-2a)l, x2 wn,L)/A; Al is the
intensity difference of the two beams, L is the length
of the fiber loop, n, is the nonlinear coefficient of
the fiber, and A is the laser wavelength. Assuming
a =0. 4, the transmittance as a function of the phase
difference Ay is shown in Fig. 3. It can be seen that
the transmittance of the NOLM exhibits a periodic
change as the phase difference increases. When o <
0.5, the phase difference Ay is proportional to the
input laser intensity /,,. That is, the transmittance
changes periodically as the input laser intensity [,
increases. The NOLM is used as the end mirror to
form the resonant cavity, and the intensity-depend-
ent loss can then be introduced. When the phase
difference Ay satisfies 2nm <Ay < (2n+1)w(n =
0,1,2------ ), the intracavity loss increases as the
incident light intensity increases. This effect can
suppress laser mode competition in the cavity ™.
When the suppression and laser mode competition
are balanced, the laser can achieve multi-wave-

length oscillation. The NALM can play the same role
as NOLM.

1.0

Transmission/%
=}
W
r

0.0 1 L
0 1 2 3 4

AY/n

Fig.3 Transmission as a function of the phase difference
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In addition, the gain-imbalance in the fiber
loop can increase the light intensity difference be-
tween the two beams transmitted in the opposite di-

rection, and accelerate the accumulation of the

phase difference. Since the laser operates in the
continuous-wave output state, the laser power densi-
ty in the cavity is low. The phase difference Ay is

between 0 and 1r.

3 Experimental Results

The laser was constructed using the scheme in
Fig. 1. The laser output spectrum was measured u-
sing a spectrum analyzer ( YOKOGAWA AQ6370D)
with a spectral resolution of 0.02 nm. When the
pump power was 260 mW, the laser output power
was 13.2 mW. The output spectrum is shown in

Fig. 4(a). The two wavelengths of 1 560.5 nm and

1 563.2 nm are simultaneously oscillated in the la-
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(a) Dual-wavelength output spectrum
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(b) Repeatedly scanned output spectra with 5 min
interval in 75 minutes

Fig.4 Characteristics of output spectra
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ser, and the power difference is about 1.6 dB. The

two wavelengths were spaced 2.7 nm apart and the



814 o DA

2%

side mode suppression ratio was greater than 45 dB.
The output spectrum was scanned 16 times in suc-
cession with a scanning interval of 5 minutes. Fig. 4
(b) is the laser output spectra at different times.
The results show that there is no significant change
in the center wavelength and power within a period
of 75 minutes.

In order to further reveal the stability of the du-
al-wavelength output of the laser at room tempera-
ture, the central wavelengths and powers of the two
wavelengths of the laser output are recorded within
75 minutes, as shown in Fig.5. It can be seen that,
the fluctuations of the two center wavelengths at
1560.5 nm and 1 563.2 nm are essentially the
same at 0. 06 nm and the power fluctuation range is

less than 0.8 dB and 0.7 dB. This slight power
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(b) Power fluctuation

Fig.5 Laser output stability
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fluctuation is mainly caused by the intensity noise of

the pump laser and the temperature-sensitive cavity

loss. The laser shows good stability.

401
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Fig.6  Output power as a function of pump power
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Fig.7 Output spectra versus different pump powers
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In the experiment, it was also discovered that
as the pump power increased, the number of wave-
length oscilating simultaneously in the cavity also in-
creased. Fig. 6 shows the output power as a function
of pump power. The laser power was measured by
the power meter ( Thorlabs, PM100D). As shown,
the pump threshold was approximately 20 mW and
the output power increased linearly with pump power
increased. The conversion efficiency was approxi-
mately 6. 1% . Fig. 7 shows the output spectra with
pump powers of 90 mW, 260 mW and 680 mW.
When the pump power is low, the laser power densi-
ty in the cavity is weak and the intensity-related loss
is insufficient to suppress the mode competition in
the cavity. Therefore, the laser operates in a single
wavelength state, as shown by the solid line in

Fig. 7. As the pump power increases, the laser pow-
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er density in the cavity increases gradually and the
intensity-dependent loss effect becomes able to sup-
press the competition between more modes. The la-
ser can then operate in a dual-wavelength or a triple-
wavelength state, as shown in dashed line and dotted
line in Fig. 7. In a previous report, the intracavity
operating wavelength number can be adjusted by

intracavity polarization controller

10]

changing the

[30

state ™! or the fiber loop radius'

4 Conclusion
In this paper, a compact dual-wavelength con-

tinuous-wave EDF laser was constructed. The laser

utilizes an all- PM fiber structure wherein there are
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only three devices in the cavity in addition to the fi-
ber itself; WDM, 2 x2 OC and HR. The intensity-
dependent loss introduced by the NALM is utilized to
suppress the mode competition. When the pump
power is 260 mW , the laser operates in a dual-wave-
length oscillation state with output wavelengths of 1
560. 5 nm and 1 563. 2 nm and has a side mode sup-
pression ratio greater than 45 dB. Within 75 mi-
nutes, both wavelengths ranged in 0.06 nm with
power fluctuations less than 0. 8 dB and 0. 7 dB. As
the pump power increases, the laser operates in sin-
gle-, dual-, and triple-wavelength modes. The laser
is compact and easy to operate, so it has many ap-

plications.
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