文章编号 2095-1531(2019)05-1147-08

一种针对超大口径凸非球面的面形检测方法

张海东^{1,2},王孝坤^{1*},薛栋林¹,张学军¹

(1. 中国科学院长春光学精密机械与物理研究所

中国科学院光学系统先进制造技术重点实验室,吉林长春130033;

2. 中国科学院大学,北京 100049)

摘要:本文提出了一种改良的检测方法用于实现对超大口径凸非球面反射镜进行高精度的面形检测。该方法利用计算 机再现全息和照明透镜混合补偿,实现对超大口径凸非球面的高精度检测。首先,对该方法的基本原理进行了分析和研 究;然后,以一块口径为800 mm 的超大口径凸非球面为例,进行了子孔径规划和检测光路中相关光学元件的设计;最后, 以中心子孔径为例,系统分析了该检测装置的敏感度。仿真实验结果表明:计算全息补偿器的设计残差均方根值小于 0.001 3 nm,该检测系统的综合检测精度可以优于 6 nm RMS。结果表明该检测系统满足超大口径凸非球面反射镜高精 度面形检测的要求。

关 键 词:面形检测;非球面;像差补偿;衍射光学元件 中图分类号:TQ171.6; 0435.2 **文献标识码:**A doi:10.3788/CO.20191205.1147

Surface testing method for ultra-large convex aspheric surfaces

ZHANG Hai-dong^{1,2}, WANG Xiao-kun^{1*}, XUE Dong-lin¹, ZHANG Xue-jun¹

(1. Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics,

Fine Mechanics and Physics, Chinese Academy of Science, Changchun 130033, China;

2. University of Chinese Academy of Sciences, Beijing 100049, China)

* Corresponding author, E-mail:jimwxk@sohu.com

Abstract: In order to achieve high-accuracy measurements of ultra-large aperture convex aspheric mirrors, a modified surface testing method is proposed. This method combines a Computer-Generated Hologram (CGH) and an illumination lens to create highly accurate and efficient measurements for ultra-large convex aspheres. Firstly, the basic principles of the method are researched. Then, a simulation is performed for an aspheric mirror with an aperture of 800 mm and a subaperture plan and CGH are designed. Finally, the sensitivity of this configuration is analyzed. Simulation results indicate that the residual aberrations are less than 0.001 3 nm RMS and that the accuracy of this testing method can be greater than 6 nm RMS. This method can satisfy

Supported by National Key Research and Development Program of China (No. 2016YFB0500100)

收稿日期:2018-10-28;修订日期:2018-12-23

基金项目:国家重点研发计划(No. 2016YFB0500100)

the requirements for high accuracy surface testing in ultra-large convex aspheric surfaces.

Key words: surface testing; aspherics; aberration compensation; diffractive optics

1引言

非球面光学元件由于自由度的提高,通过对 其进行合理设计与使用可对像差校正,像质改善, 成像系统尺寸与质量减小方面有着显著的效果, 因此,非球面光学元件正越来越多的被用于空间 光学、军事国防、高科技民用等领域[1]。尤其在 空间光学领域,天文望远镜的次镜通常都是超大 口径的凸非球面反射镜,例如即将代替哈勃望远 镜的詹姆斯韦伯太空望远镜(James Webb Space Telescope, JWST)的次镜达到了 738 mm, 一些地 基天文望远镜的次镜口径更是高达几米,例如 30 m望远镜(Thirty Meters Telescope,TMT)的次镜 直径设计为 3.1 m; 大口径巡天望远镜 (Large Synoptic Survey Telescope, LSST) 的次镜为 3.4 m 的凸非球面镜。随着空间光学技术的不断发展, 人们对凸非球面反射镜的规格和精度要求也越来 越高。这就对凸非球面的面形检测精度提出了更 高的要求,因为高精度的面形检测是精密加工的 前提和基础。

相较于口径大于 500 mm 的超大口径凸非球 面,口径小于200 mm的中小口径凸非球面的检 测方法较为成熟。常用于中小口径凸非球面高精 度面形检测的方法有无像差点检测法、透镜补偿 器和计算全息补偿器 (Computer-Generated Hologram,CGH)补偿检测法^[2-8]。这些检测光路的一 个共同点就是需要在被检镜前放置一个光学元 件,起到汇聚光束的作用,以使检测光束能够垂直 或以某一特定角度入射到待检镜的表面,而在传 统检测光路中,正是检具起到了补偿像差和汇聚 光束的作用(如透镜补偿器、CGH 补偿器和 Hindle 球)。若采用这种传统检测方法结合子孔径 拼接来应对超大口径凸非球面的面形检测,就会 带来了一个不可避免的矛盾。一方面,从提高检 测效率、提升检测精度的角度来说,需要聚光光学 元件口径尽可能大,以此来增加单次检测区域的 面积来保证检测子孔径数量的最小化;另一方面,

从检具的加工角度来说,大口径检具的加工本身 就是一个较大的难题:对于透镜补偿器来说,补偿 器的最后一个面通常都是凹非球面,高精度大口 径凹非球面的加工具有较大的难度,并且为了保 证凹非球面的高精度加工,还需要额外制作补偿 器来检测凹非球面的面形精度,此外,随着口径的 增大,透镜的重力形变也会对补偿器的装调带来 较大的影响;对于 CGH 补偿器而言,一方面,在保 证 CGH 加工精度的情况下,其线宽应不低于 3 μm,但是随着 CGH 口径的增大,其外围线宽迅 速减小,增大了加工难度,另一方面,受限于现有 的微纳加工平台的尺寸限制,口径 200 mm 以上 的 CGH 很难加工^[9-15];对于无像差点检测法而 言,检测凸非球面所需的 Hindle 球的口径通常都 是被检镜口径的两倍甚至更大,很难保证其高精 度的面形加工。这些因素共同导致以上几种传统 检测方法很难适用于超大口径凸非球面的高精度 面形检测。

本文提出了一种针对超大口径凸非球面的高 精度面形检测法。该方法利用照明透镜和 CGH 混合补偿法扩大单次测量的口径范围,再结合子 孔径拼接算法实现对超大口径反射镜的高精度面 形检测。这种方法利用照明透镜的聚光作用极大 地摆脱了传统检测光路中检测范围对检具尺寸的 严重依赖,该方法能够在使用较小 CGH 补偿器的 情况下扩大单次子孔径测量的区域,从而有效减 少所需子孔径的数量,减少了误差的传递,提高了 检测效率,同时由于需要制作补偿器数量的减少, 检测成本也降低了。

2 CGH 结合照明透镜检测方案

传统的检测光路中检具即要补偿像差,又要 汇聚光束^[16-18],本文所提出的检测方法与之不 同,主要是利用照明透镜和 CGH 补偿器相结合, 将汇聚光束和像差补偿加以区分。检测装置如图 1 所示,它主要由干涉仪、球面标准镜、小孔光阑、 CGH 补偿器、照明透镜、待检凸非球面以及相关 调整结构等组成。待检镜放置在六维精密转台 上,可以精确调整非球面的俯仰、扭摆和旋转以及 X方向,Y方向和Z方向(光轴方向)的平动。通 过调节六维精密转台可以实现被检镜从中心到外 围各个子孔径面形检测所需的所有位姿状态。从 干涉仪标准镜出射的球面波前经 CGH 位相调制 后由照明透镜汇聚,沿着被检镜面形法线方向入 射在被检区域,再经被检镜反射原路返回,携带待 检镜面形信息的反射光与干涉仪标准镜的反射光 形成干涉,通过对干涉条纹的分析,得出各个子区 域的面形精度,通过拼接算法将遍历全口径的子 孔径检测结果进行数据拼接,最终得到全口径的 面形检测结果。

图 1 检测光路示意图 Fig. 1 Schematic diagram of detection light path

该检测光路中的照明透镜放置于被检镜前, 两者间隔小于 50 mm,以便更高效地利用照明透 镜的口径。为了便于高精度加工和检测,照明透 镜设计成平凸透镜,考虑制作加工以及后期系统 装调的难度,此处的照明透镜口径设计为 300 ~ 500 mm,即该系统单次测量区域口径小于 500 mm 。需要注意的是,照明透镜的凸面指向 CGH,并 以其凸面作为参考面进行 CGH 对准区域的设计。 这样在光路调整时,照明透镜的倾斜,偏心及轴向 失调量都能通过对准区域的干涉条纹体现出,进 而指导光路的调节。此外,由于照明透镜的主要 功能是汇聚光束,而检测光路中像差补偿是由 CGH 完成的,所以针对不同环带的子孔径进行面 形检测时,仅需对 CGH 进行单独设计,而照明透 镜是通用的。这不仅降低了检测成本,也极大地 降低了检测时光路调节的难度和时间。光路中的 小孔光栏放置在干涉仪标准镜的焦平面,其作用 是对反射光路中的由 CGH 产生的干扰级次进行 隔离,只让目标级次(1,1)级通过小孔。

3 设计实例

为了证明本检测方法的可行性和准确性,通过 Zemax 对一块超大口径的凸非球面 SiC 反射镜进行了相关的实验仿真。被检镜的口径为800 mm(*R*/3.75),具体光学参数如表1 所示。

被检镜的非球面偏离量和非球面偏离量斜率

表 1 凸非球面的结构参数 Tab. 1 Structure parameters of the convex aspheric surface

顶点曲率半径/mm	非球面系数	口径/mm	材料
3 000	-0.937	800	SiC

图 2 非球面的非球面偏离量(a)及偏离量斜率(b) Fig. 2 (a)Asphere departure and (b)asphere departure slope of the aspheric surface

- 图 3 针对上述口径 800 mm(R/3.75)凸非球面的子 孔径规划图
- Fig. 3 Subaperture layout of the large convex a spheric surface with D = 800(R/3.75)

如图 2 所示,该非球面的非球面偏离量超过 40λ。 首先对该待检镜进行子孔径的规划,如图 3(a)所 示,作为对比,本文也使用传统 CGH 补偿检测法 对该反射镜进行了子孔径的规划,如图 3(b)所 示。若使用传统的 CGH 补偿检测结合子孔径拼 接法对该待检镜进行面形检测,至少需要4 块 CGH,共计 33 个子孔径才能对其进行全口径的覆 盖(假设 CGH 补偿器的主区域尺寸最大为 200 mm);使用本文的检测方案,仅需要两块 CGH 结 合一块照明透镜共计9 个子孔径(一个中心子孔 径和8 个外围子孔径)就能得到其全口径的面形 结果,极大地提高了检测效率,降低了检测成本, 同时由于子孔径数量的降低,也减少了误差传递, 提高了拼接精度。接下来,将分别对中心子孔径 和外围子孔径进行检测光路及相关光学元件的设 计。

3.1 中心子孔径

首先需要进行照明透镜的设计,为了保证照 明透镜的高精度加工,将照明透镜设计成平凸透 镜。主要的设计参数是照明透镜的焦距,焦距设 计过长不仅使得检测光路需要占用更大的空间, 而且也会给光路调整带来不必要的麻烦,而焦距 设计过短则会使照明透镜凸面的曲率变大,增加 加工难度,并且因此引入更多的球差,也会给 CGH 的设计和制作带来困难。考虑到在实际检 测过程中的气流扰动和随机振动,结合工程实际, 整个检测光路的长度应当控制在10 m 以内。

对于 CGH 而言,使用 Zemike 的前 37 项来拟 合其位相分布,通过引入合适的离焦载频和倾斜 载频,并结合放置在焦平面的小孔光栏使得鬼像 级次能够被完全分离,中心子孔径的检测光路以 及主要光学元件的相关参数如表 2 所示,检测光 路图、鬼像级次的分离情况如图 4 所示。CGH 加 工在一块厚度为 10 mm 的 BK7 玻璃基板上,CGH 的主区域的尺寸为 168 mm,并且其最小线宽为 39.7 µm,照明透镜的口径为420 mm,其凸面的曲 率半径为 1 150 mm。

表 2	中心子孔径检测系统及相关光学元件的参数

Tab. 2	Central subaperture	detection sy	ystem and	parameters of	f related optical	components
			•			

CGH 主要参数		数值/mm	检测系统主要参数	数值/mm
离轴偏移量		20.077	L1	3 800
CGH 厚度		10	L2	4 600
CGH 主区域口径	준	168	L3	40
CGH 最小线宽	:	39.7 μm		
	(0,2)	1.2	照明透镜参数	数值/mm
干扰级次与光轴的距离	(2,0)	1.2		
	(1,0)	4.0	中心厚度	40
	(1,2)	4.0	曲率半径	1150
	(-1,3)	5.8	口径	420
	(3, -1)	5.0	材料	BK7

- 图4 (a)中心子孔径的检测设计光路图;(b)各干 扰衍射级次在焦平面的分布情况;(c)中心子 孔径的设计残差图
- Fig. 4 (a) Design of the configuration used to test the central subaperture; (b) disturbing diffraction orders separated on the filter plane; (c) design residual of central subaperture

尽管通常情况下,(-1,3)和(3,-1)级次衍 射杂光,由于其高衍射效率和顽固性,在进行衍射 杂光分析和去除时,应给予最大重视,但是本文仍 关注(0,2)和(2,0)两个衍射级次,主要基于如下 两方面进行研究^[17]:

(1)(0,2)和(2,0)两个级次与(1,1)级次在
滤波平面上分开的相对距离与(-1,3)和(3,-1)级次成正比。

(2)由于 CGH 存在制造误差,(0,2)和(2,0) 级次的衍射效率并不完全为零,尤其是当采用振 幅型 CGH 时。此时,(0,2)和(2,0)级次的杂光 也将影响 CGH 补偿测量的干涉图质量,也应给予 去除。

分析设计结果可以看出,所有的干扰级次的 鬼像都能够被有效分离,距离最近为(0,2)和(2, 0)级次,距目标焦点为 1.2 mm。CGH 的设计残 差为 RMS 0.000 0λ, PV 0.000 2λ。

3.2 外围子孔径

由于外围子孔径具有旋转对称性,所以仅需

要设计一块 CGH 就能实现对外围 8 个子孔径的 面形检测。以中心子孔径上方的子孔径为例,外 围子孔径沿着 X 轴的横向位移为 300 mm,并且将 待检镜绕着 Y 轴旋转 5.712°。外围子孔径的检 测光路沿用中心子孔径的照明透镜,检测光路的 设计参数 如表 3 所示。CGH 的横向位移为 27.44 mm,如图 5(a)所示,CGH 主区域的尺寸为 194 mm,最小线宽为 36.5 μm。所有干扰级次的 鬼像都能够被有效分离,距离最近为(0,2)和 (2,0)级次,距目标焦点为 1.2 mm,如图 5(b)所 示。CGH 的 设 计 残 差 为 RMS 0.0013 λ , PV 0.006 0 λ 。

- 图 5 (a)外围子孔径的检测设计光路图;(b)各干 扰衍射级次在焦平面的分布情况;(c)外围子 孔径的设计残差图
- Fig. 5 (a) Design of the configuration used to test the outer subaperture; (b) disturbing diffraction orders separated on the filter plane; (c) design residual of the outer subaperture

对于其他外围子孔径,每次仅需要将被检镜 旋转45°,再经过光路微调得到零条纹后,就能实 现对外围子孔径的高精度面形检测,采集到各个 子孔径的面形检测结果之后,通过数据拼接处理 就能得到凸非球面的全口径的面形精度。

Tab. 3 Outer subaperture test system and parameters of related optical components				
CGH 主要参数	汝	数值/mm	检测系统主要参数	数值/mm
离轴偏移量		27.44	L1	4 000
CGH 厚度		10	L2	4 200
CGH 主区域口	径	194	L3	40
CGH 最小线到	宽	36.5µm		
干扰级次与光轴的距离	(0,2)	1.2	照明透镜参数	数值/mm
	(2,0)	1.2		
	(1,0)	13.5	中心厚度	40
	(1,2)	14.0	曲率半径	1 150
	(-1,3)	6.0	口径	420
	(3, -1)	5.5	材料	BK7

外围子孔径检测系统及相关光学元件的参数 表3

检测精度分析 4

由于本实验装置不是共光路系统,因此对于 非共路部分的误差源,都应仔细分析其对检测结 果的敏感度。误差主要有两类:调整误差和加工 误差。调整误差主要包括 CGH 和照明透镜的倾 斜、偏心以及轴向失调量;加工误差主要包括照明 透镜材料的折射率均匀性误差、面形误差、凸面的 曲率误差、中心厚度误差以及 CGH 的加工误差。

以上述中心子孔径的检测光路为例,进行敏 感度分析。假设该检测光路中的误差源都是相互 独立的,通过 Zemax 中蒙特卡洛分析得到各个误 差源对波前的影响,分析结果如表4所示。从表 中可以发现,处于非共光路中的照明透镜相关参 数的误差对检测结果均有较大的影响,如照明透 镜凸面的曲率半径、光学材料的折射率均匀性等。 通过对各个误差源的分析可以得出单个子孔径的 检测精度为 0.017λ(10.7 nm)。

而在实际检测过程中,并不需要将照明透镜 的加工精度严格保证在允差范围内,只需保证照 明透镜的相关参数被严格标定即可。在设计 CGH 时使用照明透镜的测量真值,即可补偿照明 透镜的加工误差。如照明透镜的曲率半径和面形 误差,可以分别使用猫眼-共焦定焦球面干涉法和 子孔径拼接法对其进行高精度的检测标定。此

表4 中心子孔径检测系统中光学 元件加工、调整的敏感度分析

Tab. 4 Processing and adjustment sensitivity analysis of optical components in central sub-aperture detection system

参数		允差	波前误差(λ)
L1		10 µm	0.000 15
L2		10 µm	0.002 7
L3		10µm	0.001 5
CGH 倾斜量	X	1 μm	0.000 4
	Y	1 μm	0.000 4
CGH 偏心量	X	1 μm	0.001 9
	Y	1 μm	0.001 9
透镜倾斜量	X	1 μm	0.007 3
	Y	1 μm	0.007 3
透镜偏心量	X	1 μm	0.003
	Y	1 μm	0.003
透镜中心厚度		10 µm	0.000 9
透镜凸面曲率半径		5 µm	0.009
透镜面形误差		$1/100\lambda$	0.004
透镜材料折射率均匀性		2×10^{-6}	0.003
CGH 综合误差		-	0.007
其余误差		-	0.001
综合		-	0.017

外,对于检测光路中的一些调整参量,如轴向位置 误差 L1、L2、均可从 CGH 对准区域的干涉条纹中 反应出来,通过精确调整三维精密转台将对准区 域调整至零条纹,即可保证相关调整参量在允差 范围内。将这些可控的调整误差和可标定的加工 误差从精度分析中剔除后,可以发现该检测方案 的单次最优检测精度高于 0.007 8 λ RMS (4.9 nm),结合本实验室自行研发的拼接算 法^[19],其精度为 0.004 λ RMS,本检测方案的最终 检测精度为 0.008 8 λ RMS(5.5 nm),如表 5 所 示。

表 5 拼接检测系统的最优检测精度 Tab. 5 Optimal detection accuracy of

the testing system					
参数	允差	波前误差(λ)			
L3	10 µm	0.001 5			
透镜中心厚度	10 µm	0.000 9			
透镜材料折射率均匀性	2×10^{-6}	0.003			
CGH 综合误差	-	0.007			
拼接误差	-	0.004			
综合	-	0.008 8			

5 结 论

本文提出了一种针对超大口径凸非球面的高 精度面形检测方案。该方法能够在使用尺寸较小 CGH 补偿器的情况下通过照明透镜扩大单次子 孔径的测量区域,有效减少所需子孔径的数量,减 少误差传递的同时也减少了所需补偿器的数量。 该检测方法中使用的照明透镜是一片平凸透镜, 其加工、检测、装调难度和制造成本相对透镜补偿 器低,并且无需针对子孔径单独设计,适用性广 泛。通过对一块口径为800 mm 的超大口径 SiC 凸非球面进行中心及外围子孔径所对应的检测光 路、透镜和 CGH 的设计,证明了该检测方案的可 行性。通过分析检测综合误差可以得出,该方法 的综合检测精度可以优于6 nm RMS,从而为超大 口径凸非球面面形的高精度检测提供依据和保 障。

参考文献:

- [1] YABE A. Optimal selection of aspheric surfaces in optical design[J]. Optics Express, 2005, 13(18):7233-7242.
- [2] LI J F, XUAN B, SUN Y. Hindle test of SiC convex conic hyperboloid[J]. Proceedings of SPIE, 2012, 8417:841716.
- [3] OH C J, LOWMAN A E, DUBIN M, et al. Modern technologies of fabrication and testing of large convex secondary mirrors[J]. Proceedings of SPIE, 2016, 9912:99120R.
- [4] ABDULKADYROV M A, BELOUSOV S P, PRIDNYA V V, et al. Optimizing the shaping technology and test methods for convex aspheric surfaces of large optical items[J]. Journal of Optical Technology, 2013, 80(4):219-225.
- [5] WYANT J C. Computerized interferometric surface measurements [Invited][J]. Applied Optics, 2013, 52(1):1-8.
- [6] KIM Y S, KIM B Y, LEE Y W. Design of null lenses for testing of elliptical surfaces [J]. *Applied Optics*, 2001, 40(19): 3215-3219.
- [7] KIM T, BURGE J H, LEE Y, et al. Null test for a highly paraboloidal mirror [J]. Applied Optics, 2004, 43(18): 3614-3618.
- [8] LI F ZH, ZHAO J L, LI R G, et al. Design and Fabrication of CGH for aspheric surface testing and its experimental comparison with null lens[J]. Proceedings of SPIE, 2010, 7656:765643.
- [9] WANG Z W, GUO P J, CHEN X, et al. Design of null lens system for f/0.5 hyperboloid mirror [J]. Proceedings of SPIE, 2016, 9683:96831A.
- [10] MURPHY P, DEVRIES G, FLEIG J, et al. Measurement of high-departure aspheric surfaces using subaperture stitching with variable null optics [J]. Proceedings of SPIE, 2009, 7426:74260P.
- [11] XUE SH, CHEN SH Y, SHI F, et al. Sub-aperture stitching test of a cylindrical mirror with large aperture [J]. Proceedings of SPIE, 2016, 9684:96840C.
- [12] 王孝坤,王丽辉,张学军,等.子孔径拼接干涉法检测非球面[J].光学 精密工程,2007,15(2):192-198.
 WANG X K, WANG L H, ZHANG X J, et al.. Testing asphere by subaperture stitching interferometric method[J]. Opt.

Precision Eng., 2007, 15(2): 192-198. (in Chinese)

- [13] BURGE J H, ANDERSON D S, MILSTER T D, et al. Measurement of a convex secondary mirror using a holographic test plate[J]. Proceedings of SPIE, 1994, 2199:193-198.
- [14] ZHANG Y H, CHEN Q. Testing the large convex aspheric surfaces with aspheric test plate [J]. Proceedings of SPIE, 2014,9280:928014.
- [15] DUBIN M B, SU P, BURGE J H. Fizeau interferometer with spherical reference and CGH correction for measuring large convex aspheres [J]. Proceedings of SPIE, 2015, 7426:74260S.
- [16] PENG J T, CHEN ZH, ZHANG X X, et al. Optimal design of tilt carrier frequency computer-generated holograms to measure aspherics [J]. Applied Optics, 2015, 54(24):7433-7441.
- [17] PENG J T, REN J Y, ZHANG X X, *et al.* Analytical investigation of the parasitic diffraction orders of tilt carrier frequency computer-generated holograms [J]. *Applied Optics*, 2015, 54(13):4033-4041.
- [18] 黎发志,罗霄,赵晶丽,等. 离轴非球面的计算全息图高精度检测技术[J]. 光学 精密工程,2011,19(4):709-716.
 LI F ZH,LUO X,ZHAO J L, *et al.*. Test of off-axis aspheric surfaces with CGH[J]. *Opt. Precision Eng.*, 2011,19(4): 709-716. (in Chinese)
- [19] 王孝坤,郑立功,张斌智,等. 子孔径拼接检测大口径非球面技术的研究[J]. 应用光学,2009,30(2):273-278.
 WANG X K, ZHENG L G, ZHANG B ZH, *et al.*. Testing of large aspheric surfaces by subaperture stitching interferometry[J]. *Journal of Applied Optics*,2009,30(2):273-278. (in Chinese)

作者简介:

张海东(1993—),男,江苏盐城人,博士 研究生,2015年于盐城工学院获得学士 学位,主要从事光学面形检测和衍射元 件设计加工等方面的研究。E-mail: zhanghaidong93@ hotmail.com

王孝坤(1980一),男,江苏丹阳人,博士, 研究员,2003年于徐州师范大学获得学 士学位,2008年于中国科学院长春光学 精密机械与物理研究所获得博士学位, 主要从事先进光学制造技术等方面研 究。E-mail:jimwxk@sohu.com