留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于激光多普勒频移的钢轨缺陷监测

邢博 余祖俊 许西宁 朱力强

邢博, 余祖俊, 许西宁, 朱力强. 基于激光多普勒频移的钢轨缺陷监测[J]. 中国光学(中英文), 2018, 11(6): 991-1000. doi: 10.3788/CO.20181106.0991
引用本文: 邢博, 余祖俊, 许西宁, 朱力强. 基于激光多普勒频移的钢轨缺陷监测[J]. 中国光学(中英文), 2018, 11(6): 991-1000. doi: 10.3788/CO.20181106.0991
XING Bo, YU Zu-jun, XU Xi-ning, ZHU Li-qiang. Rail defect monitoring based on laser Doppler frequency shift theory[J]. Chinese Optics, 2018, 11(6): 991-1000. doi: 10.3788/CO.20181106.0991
Citation: XING Bo, YU Zu-jun, XU Xi-ning, ZHU Li-qiang. Rail defect monitoring based on laser Doppler frequency shift theory[J]. Chinese Optics, 2018, 11(6): 991-1000. doi: 10.3788/CO.20181106.0991

基于激光多普勒频移的钢轨缺陷监测

doi: 10.3788/CO.20181106.0991
基金项目: 

“十三五”国家重点研发计划 2016YFB1200401

中央高校基本科研业务费 2016RC004

详细信息
    作者简介:

    邢博(1991-), 女, 吉林长春人, 博士研究生, 2014年于北京交通大学获得学士学位, 并保送北京交通大学硕博连读, 2015年转为博士研究生, 主要从事铁路基础设施无损检测方面的研究。E-mail:15116333@bjtu.edu.cn

    许西宁(1979-), 男, 江苏徐州人, 博士后, 2014年于北京交通大学获得博士学位, 现为北京交通大学讲师, 主要从事铁路基础设施无损检测方面的研究。E-mail:xuxining@bjtu.edu.cn

  • 中图分类号: TB553;TB57

Rail defect monitoring based on laser Doppler frequency shift theory

Funds: 

National Key Research and Development Program of China 2016YFB1200401

Foundamental Research Funds for the Central Universities 2016RC004

More Information
  • 摘要: 针对现阶段我国铁路上应用的探伤设备只能在天窗时间进行人工巡检,无法在线监测的问题,提出一种基于超声导波的激光多普勒频移法钢轨内部缺陷监测方法。首先,引入环境温度作为变量改进了半解析有限元方法,并应用该方法获得了我国无缝线路CHN60钢轨在特定温度下的频散曲线。通过分析振型并结合激励响应算法确定了适于检测缺陷的模态及其激励方式,从而激励该超声导波模态使其在钢轨中传播。然后,应用半反半透玻璃镜将激光分为参考光和测量光,测量光通过Bragg Cell进行频偏照射钢轨表面,通过反射光产生的多普勒频移与参考光干涉得到光强度变化曲线,经过信号处理及标定测得钢轨内部缺陷的回波速度信号,再经过数字化处理和计算得到缺陷的位置。最后,在北京环形铁路试验基地进行了现场实验,以钢轨接地孔模拟钢轨内部核伤,得到缺陷定位误差均小于0.5 m,验证了该方法的可行性。使用激光多普勒频移方法检测导波信号从而定位缺陷的方法可以有效避免由于换能器接触性测量而产生的误差。该方法在不影响列车的正常运营的同时,实现了全天候无间断的在线监测,提高了检测效率。

     

  • 图 1  CHN60钢轨坐标系

    Figure 1.  Coordinates of CHN60 rail

    图 2  CHN60轨截面离散图

    Figure 2.  Discretization of cross section of CHN60 rail

    图 3  频散曲线(T=32 ℃)

    Figure 3.  Dispersion curves(T=32 ℃)

    图 4  -20 ℃和40 ℃时3号轨腰扭转模态频散曲线

    Figure 4.  Dispersion curves of rail waist torsional mode for No.3 rail at -20 ℃ and 40 ℃

    图 5  钢轨中声波的衰减曲线图

    Figure 5.  Attenuation curves of sound waves in rails

    图 6  钢轨中各模态的振型

    Figure 6.  Vibration shapes of various modes in rails

    图 7  模态3的振型

    Figure 7.  Vibration shapes of mode 3

    图 8  激励方向和位置

    Figure 8.  Excitation direction and position

    图 9  激励信号频谱

    Figure 9.  Frequency spectrum of exciting signal

    图 10  4 m处轨腰中心y方向位移

    Figure 10.  Y direction displacement of rail waist center at x=4 m

    图 11  轨腰接地孔模拟缺陷

    Figure 11.  Simulation defect of rail waist ground hole

    图 12  仿真模型图

    Figure 12.  Simulation models

    图 13  回波信号

    Figure 13.  Reflection echo signal

    图 14  发射换能器安装图

    Figure 14.  Transmitting transducer installation

    图 15  设计原理及检测现场图

    Figure 15.  Design principle and detection image

    图 16  换能器安装位置示意图

    Figure 16.  Sketch of transducer installation

    图 17  接收点r1波形

    Figure 17.  Waveform of receiving node r1

    表  1  缺陷位置估算及误差

    Table  1.   Defect location estimation and its error

    h1h2error1error2
    6 m3.3519.330.050.43
    10 m3.5318.440.130.46
    14 m3.2819.280.120.38
    下载: 导出CSV
  • [1] 田贵云, 高斌, 高运来, 等.铁路钢轨缺陷伤损巡检与监测技术综述[J].仪器仪表学报, 2016, 37(8):1763-1780. doi: 10.3969/j.issn.0254-3087.2016.08.008

    TIAN G Y, GAO B, GAO Y L, et al.. Review of railway rail defect non-destructive testing and monitoring[J]. Chinese Journal of Scientific Instrument, 2016, 37(8):1763-1780.(in Chinese) doi: 10.3969/j.issn.0254-3087.2016.08.008
    [2] 王时丽.基于机器视觉的钢轨表面缺陷检测技术研究[D].西南科技大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10004-1017043513.htm

    WANG SH L. Research on flaw detection technology of rail surface based on machine vision[D]. Southwest University of Science and Technology, 2016.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10004-1017043513.htm
    [3] 杨国涛.钢轨探伤车探伤作业系统自主化研究[J].铁道建筑, 2016(9):124-126. http://d.old.wanfangdata.com.cn/Periodical/tdjz201609031

    YANG G T. Study on the autonomy of inspection system for rail flaw detection vehicle[J]. Railway Construction, 2016(9):124-126.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/tdjz201609031
    [4] 冯超, 黎双周, 范中原.基于轨道电路原理的断轨检测方法研究[J].兰州工业学院学报, 2015, 22(4):75-77. doi: 10.3969/j.issn.1009-2269.2015.04.017

    FENG CH, LI SH ZH, FAN ZH Y. Research on track fault detection method based on the principle of track circuit[J]. Journal of Lanzhou Institute of Industry, 2015, 22(4):75-77.(in Chinese) doi: 10.3969/j.issn.1009-2269.2015.04.017
    [5] 李文超, 张丕状.超声波检测钢轨缺陷及定位的研究[J].核电子学与探测技术, 2012, 32(9):1062-1065. doi: 10.3969/j.issn.0258-0934.2012.09.016

    LI W CH, ZHANG P ZH. Research on ultrasonic inspection of rail defects and positioning[J]. Nuclear Electronics & Detection Technology, 2012, 32(9):1062-1065.(in Chinese) doi: 10.3969/j.issn.0258-0934.2012.09.016
    [6] MAZZOTTI M, MARZANI A, BARTOLI I, et al.. Guided waves dispersion analysis for prestressed viscoelastic waveguides by means of the SAFE method[J]. International Journal of Solids and Structures, 2012, 49:2359-2372. doi: 10.1016/j.ijsolstr.2012.04.041
    [7] 吴斌, 符浩, 何存富.超声导波虚拟相控聚焦方法研究[J].仪器仪表学报, 2013, 34(3):509-516. doi: 10.3969/j.issn.0254-3087.2013.03.005

    WU B, FU H, HE C F. Ultrasonic guided wave inspection based on synthetic phase control method[J]. Chinese Journal of Scientific Instrument, 2013, 34(3):509-516.(in Chinese) doi: 10.3969/j.issn.0254-3087.2013.03.005
    [8] 李秀明, 黄战华, 李翔宇, 等.二维点列式激光多普勒法测量物体速度[J].光学精密工程, 2014, 22(10):2627-2632. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201410008

    LI X M, HUANG ZH H, LI X Y, et al.. Two-dimensional point laser Doppler velocimeter for velocity measurement[J]. Opt. Precision Eng., 2014, 22(10):2627-2632.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201410008
    [9] 李一博, 靳世久, 孙立.超声导波在管道中的传播特性的研究[J].电子测量与仪器学报, 2005, 19(5):63-66. http://d.old.wanfangdata.com.cn/Periodical/dzclyyqxb200505016

    LI Y B, JIN SH J, SUN L. Study on propagation characteristics of ultrasonic guided wave in pipeline[J]. Journal of Electronic Measurement and Instrument, 2005, 19(5):63-66.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/dzclyyqxb200505016
    [10] 雷正, 涂君, 邱公喆, 等.外加应力下超声导波传播特性仿真研究[J].仪表技术与传感器, 2017(6):125-128. doi: 10.3969/j.issn.1002-1841.2017.06.030

    LEI ZH, TU J, QIU G ZH, et al.. Simulation study on transmitting characteristics of ultrasonic guided wave under external stress[J]. Instrument Technique and Sensor, 2017(6):125-128.(in Chinese) doi: 10.3969/j.issn.1002-1841.2017.06.030
    [11] LOVEDAY P W. Semi-analytical finite element analysis of elastic waveguides subjected to axial loads[J]. Ultrasonics, 2009, 49(3):298-300. doi: 10.1016/j.ultras.2008.10.018
    [12] ALESSANDRO MARZANI. Time-transient response for ultrasonic guided waves propagating in damped cylinders[J]. International Journal of Solids and Structures, 2008, 45:6347-6368. doi: 10.1016/j.ijsolstr.2008.07.028
    [13] HAYASHI T, SONG W J, ROSE J L. Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example[J]. Ultrasonics, 2003, 41:175-183. doi: 10.1016/S0041-624X(03)00097-0
    [14] 许西宁, 郭保青, 余祖俊, 等.半解析有限元法求解钢轨中超声导波频散曲线[J].仪器仪表学报, 2014, 35(10):2392-2398. http://d.old.wanfangdata.com.cn/Periodical/yqyb201410032

    XU X N, GUO B Q, YU Z J, et al.. Semi-analytical finite elements method for calculating dispersion curves of ultrasonic guided waves in a rail[J]. Chinese Journal of Scientific Instrument, 2014, 35(10):2392-2398.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yqyb201410032
    [15] 卢耀荣.无缝线路研究与应用[M].北京:中国铁道出版社, 2010:47-48.

    LU Y R. Research and Application of Continuous Welded Rail Track[M]. Beijing:China Railway Publishing House, 2010:47-48.(in Chinese)
    [16] ROSE J L, AVIOLI M J, MUDGE P, et al. Guided wave inspection potential of defects in rail[J]. NDT&E International, 2004(37):153-161. http://www.sciencedirect.com/science/article/pii/S0963869503001063
    [17] 朱力强, 许西宁, 余祖俊, 等.基于超声导波的钢轨完整性检测方法研究[J].仪器仪表学报, 2016, 37(7):1603-1609. doi: 10.3969/j.issn.0254-3087.2016.07.021

    ZHU L Q, XU X N, YU Z J, et al.. Study on the method for monitoring railway integrity based on ultrasonic guided waves[J]. Chinese Journal of Scientific Instrument, 2016, 37(7):1603-1609.(in Chinese) doi: 10.3969/j.issn.0254-3087.2016.07.021
    [18] 李翔, 陈实.时频结合的失真度测量方法研究[J].国外电子测量技术, 2017, 36(1):27-30. doi: 10.3969/j.issn.1002-8978.2017.01.008

    LI X, CHEN SH. Research on time-frequency conjoined scheme for distortion measurement[J]. Foreign Electronic Measurement Technology, 2017, 36(1):27-30.(in Chinese) doi: 10.3969/j.issn.1002-8978.2017.01.008
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  2534
  • HTML全文浏览量:  894
  • PDF下载量:  197
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-11
  • 修回日期:  2018-10-15
  • 刊出日期:  2018-12-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!