留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地球同步轨道暗弱目标地基光学成像技术综述

罗秀娟 刘辉 张羽 陈明徕 兰富洋

罗秀娟, 刘辉, 张羽, 陈明徕, 兰富洋. 地球同步轨道暗弱目标地基光学成像技术综述[J]. 中国光学(中英文), 2019, 12(4): 753-766. doi: 10.3788/CO.20191204.0753
引用本文: 罗秀娟, 刘辉, 张羽, 陈明徕, 兰富洋. 地球同步轨道暗弱目标地基光学成像技术综述[J]. 中国光学(中英文), 2019, 12(4): 753-766. doi: 10.3788/CO.20191204.0753
LUO Xiu-juan, LIU Hui, ZHANG Yu, CHEN Ming-lai, LAN Fu-yang. Review of ground-based optical imaging techniques for dim GEO objects[J]. Chinese Optics, 2019, 12(4): 753-766. doi: 10.3788/CO.20191204.0753
Citation: LUO Xiu-juan, LIU Hui, ZHANG Yu, CHEN Ming-lai, LAN Fu-yang. Review of ground-based optical imaging techniques for dim GEO objects[J]. Chinese Optics, 2019, 12(4): 753-766. doi: 10.3788/CO.20191204.0753

地球同步轨道暗弱目标地基光学成像技术综述

doi: 10.3788/CO.20191204.0753
基金项目: 

国家自然科学基金面上项目 61875257

详细信息
    作者简介:

    罗秀娟(1964—),女,江西南康人,研究员,硕士生导师,1986年于西安电子科技大学获得学士学位,主要从事激光成像技术方面的研究。E-mail:xj_luo@opt.ac.cn

  • 中图分类号: TH743

Review of ground-based optical imaging techniques for dim GEO objects

Funds: 

National Natural Science Foundation of China 61875257

More Information
  • 摘要: 地基光学成像是对空间目标进行探测识别的重要手段。本文分析了近十几年间建立的用于天文观测的巨型望远镜设备不能对地球同步轨道(Geostationary Earth Orbit, GEO)目标进行高分辨率观测的主要原因:除大气湍流对成像质量的影响和分辨率的限制外,还有GEO目标尺寸和目标亮度昏暗问题。因此需要引入非传统成像技术解决上述问题。本文研究了几种采用激光照明的非传统光学成像方法,具体分析论证了稀疏孔径成像、强度相关成像、剪切光束成像和傅立叶望远术等光学成像技术,阐述了各成像技术的优势与局限性,分析了几种方法对GEO暗弱目标高分辨率成像的应用前景。

     

  • 图 1  空间目标地基传统光学成像技术

    Figure 1.  Traditional ground-based optical imaging technology for space target

    图 2  凯克拼接镜

    Figure 2.  Keck Segmented mirror

    图 3  GMT望远镜概念图

    Figure 3.  GMT telescope concept map

    图 4  MROI干涉阵列

    Figure 4.  MROI interference array

    图 5  Galileo望远镜概念图

    Figure 5.  Galileo telescope concept map

    图 6  强度相关成像技术原理示意图

    Figure 6.  Schematic diagram of imaging correlography

    图 7  剪切光束成像原理示意图

    Figure 7.  Schematic diagram of sheared-beam imaging

    图 8  OPC 1 km水平路径外场实验装置(上)、目标(左)及成像结果(右)

    Figure 8.  Outfield experimental device of OPC 1 km horizontal path(top), object(left) and imaging result(right)

    图 9  傅立叶望远术成像原理示意图

    Figure 9.  Schematic diagram of imaging principle for Fourier telescope

    图 10  GLINT发射架与探测器接收阵列

    Figure 10.  GLINT transmitter and detectors receiving array

  • [1] 王建立.空间目标地基光电探测与识别技术的发展[J].飞行器测控学报, 2015, 34(6):489-499. http://d.old.wanfangdata.com.cn/Periodical/fxqckxb201506001

    WANG J L. Development of technologies for detection and identification of space objects with ground-based E-O systems[J]. Journal of Spacecraft TT & C Technology, 2015, 34(6):489-499.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxqckxb201506001
    [2] 高扬, 赵金宇, 刘俊池, 等.中高轨道目标的地基光电监视[J].光学 精密工程, 2017, 25(10):2584-2590. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201710007

    GAO Y, ZHAO J Y, LIU J CH, et al.. Ground-based photoelectric surveillance for mid-high orbit target[J]. Opt. precision Eng., 2017, 25(10):2584-2590.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201710007
    [3] 李振伟, 张涛, 张楠, 等.暗弱空间目标的高精度定位[J].光学 精密工程, 2015, 23(9):2627-2634. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201509026

    LI ZH W, ZHANG T, ZHANG N, et al.. High precision orientation of faint space objects[J]. Opt. Precision Eng., 2015, 23(9):2627-2634.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201509026
    [4] BAKKER E J, PARAMESWARIAH C, RAJAGOPAL J. Cost estimate for the Kilometric Optical Interferometer(KOI)[J]. Proceedings of SPIE, 2008, 7013:70134F. https://www.researchgate.net/publication/238693300_Cost_estimate_for_the_Kilometric_Optical_Interferometer_KOI
    [5] LABADIE L, HERBST T M, RIX H W. Interferometry at the LBT[C]. Proceedings of Société Francaise d'Astronomie et d'Astrophysique, SF2A, 2008: 73-76.
    [6] CAMPBELL R D, LE MIGNANT D, VAN DAM M A, et al.. AO operations at the W. M. keck observatory[J]. Proceedings of SPIE, 2008, 7016:701604. doi: 10.1117/12.790118
    [7] ROBERTS S, SUN S, KERLEY D. Optical performance analysis and optimization of large telescope structural designs[J]. Proceedings of SPIE, 2005, 5867:58670O. doi: 10.1117/12.618568
    [8] SZETO K, ROBERTS S, GEDIG M, et al.. TMT telescope structure system:design and development progress report[J]. Proceedings of SPIE, 2008, 7012:70122G. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC0210517297/
    [9] ROBERTS S. Systems engineering of the thirty meter telescope through integrated opto-mechanical analysis[J]. Proceedings of SPIE, 2010, 7738:773818. doi: 10.1117/12.857661
    [10] MURGA G, BILBAO A, VIZCARGVENAGA A, et al.. Detail design and construction plans for a dome for the European Extremely Large Telescope(E-ELT)[J]. Proceedings of SPIE, 2010, 7733:773324. doi: 10.1117/12.856739
    [11] PIRNAY O, GLOESENER P, GABRIEL E, et al.. Design of the unit telescopes of the MROI[J]. Proceedings of SPIE, 7013:70130N. https://www.researchgate.net/publication/252117955_Design_of_the_unit_telescopes_of_the_MROI?ev=prf_high
    [12] CREECH-EAKMAN M J, BUSCHER D F, HANIFF C A, et al.. The Magdalena ridge observatory interferometer:a fully optimized aperture synthesis array for imaging[J]. Proceedings of SPIE, 2004, 5491:405-414. doi: 10.1117/12.552115
    [13] PARESCE F. Recent scientific results with the VLT interferometer[J]. Mem S.A.It. Suppl, 2003, 3:280-285. https://www.researchgate.net/publication/228597193_Recent_Scientific_Results_with_the_VLT_Interferometer
    [14] BENSON J A, HUTTER D J, JOHNSTON K J, et al.. NPOI:recent technology and science[J]. Proceedings of SPIE, 2004, 5491:464-471. doi: 10.1117/12.550957
    [15] MCALISTER H A, TEN BRUMMELAAR T A, GIES D R, et al.. First results from the CHARA array.Ⅰ.An interferometric and spectroscopic study of the fast rotator α leonis(Regulus)[J]. The Astrophysical Journal, 2005, 628(1):439-452. https://www.researchgate.net/publication/230975420_First_Results_from_the_CHARA_Array_I_An_Interferometric_and_Spectroscopic_Study_of_the_Fast_Rotator_a_Leonis_Regulus
    [16] DARPA TACTICAL TECHNOLOGY OFFICE. Broad agency announcement: Galileo[R]. 2012.
    [17] RESTAINO S R, ARMSTRONG J T, et al.. Using optical interferometry for GEO satellites imaging:an update[J]. Proceedings of SPIE, 2016, 9836:983603. https://www.researchgate.net/publication/303323967_Using_optical_interferometry_for_GEO_satellites_imaging_an_update?ev=auth_pub
    [18] Office of the Director of National Intelligence. Amon-Hen[EB/OL].(2017-06-12). http://www.iarpa.gov/index.php/research-programs/amon-hen?id=952,IARPA-BAA-17-02.pdf.
    [19] MUGNIER L M, BLANC A, IDIER J. Phase diversity:a technique for wave-front sensing and for diffraction-limited imaging[J]. Advances in Imaging and Electron Physics, 2006, 141:1-76. doi: 10.1016/S1076-5670(05)41001-0
    [20] LABEYRIE A. Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images[J]. Astronomy and Astrophysics, 1970, 6:85-87.
    [21] KNOX K T, THOMPSON B J. Recovery of images from atmospherically degraded short-exposure photographs[J]. Astrophysical Journal, 1974, 193(1):L45-L48. https://www.researchgate.net/publication/234481114_Recovery_of_images_from_atmospherically_degraded_short-exposure_photographs
    [22] AYERS G R, NORTHCOTT M J, DAINTY J C. Knox-Thompson and triple-correlation imaging through atmospheric turbulence[J]. Journal of the Optical Society of America A, 1988, 5(7):963-985. doi: 10.1364/JOSAA.5.000963
    [23] HORCH E P. Speckle imaging at large telescopes:current results and future prospects[J]. Proceedings of SPIE, 2016, 9907:99070J. https://www.researchgate.net/publication/305869882_Speckle_imaging_at_large_telescopes_current_results_and_future_prospects
    [24] NUÑEZ P D. Towards optical intensity interferometry for high angular resolution stellar astrophysics[D]. Salt-Lake City: The University of Utah, 2012.
    [25] PELLIZZARI C, HOLMES R, KNOX K. Intensity interferometry experiments and simulations[J]. Proceedings of SPIE, 2012, 8520:85200J. doi: 10.1117/12.930537
    [26] DRAVINS D, LEBOHEC S, JENSEN H, et al.. Optical intensity interferometry with the Cherenkov telescope array[J]. Astroparticle Physics, 2013, 43:331-347. doi: 10.1016/j.astropartphys.2012.04.017
    [27] STREKALOV D V, ERKMEN B I, YU N. Intensity interferometry for observation of dark objects[J]. Physical Review A, 2013, 88(5):053807. doi: 10.1103/PhysRevA.88.053807
    [28] VOELZ D G, BELSHER J F, ULIBARRI L J, et al.. Ground-to-space laser imaging:review 2001[J]. Proceedings of SPIE, 2002, 4489:35-47. doi: 10.1117/12.453240
    [29] IDELL P S, GONGLEWSKI J D, VOELZ D G, et al.. Image synthesis from nonimaged laser-speckle patterns:experimental verification[J]. Optics Letters, 1989, 14(3):154-156. doi: 10.1364/OL.14.000154
    [30] RIDER D B, VOELZ D G, GONGLEWSKI J D, et al.. Imaging correlography using an inverse synthetic aperture signal recovery and synthesis Ⅳ[J]. Technical Digest Series, 1992, 11:58-60.
    [31] IDELL P S, FIENUP J R. Imaging correlography with sparse collecting apertures[J]. Proceedings of SPIE, 1988, 828:140-148. doi: 10.1117/12.942091
    [32] VOELZ D G, GONGLEWSKI J D, IDELL P S. Image synthesis from nonimaged laser-speckle patterns:comparison of theory, computer simulation, and laboratory results[J]. Applied Optics, 1991, 30(23):3333-3344. doi: 10.1364/AO.30.003333
    [33] VOELZ D G, O'KEEFE S D, GONGLEWSKI J D, et al.. High-resolution imagery of a space object using an unconventional laser-illumination imaging technique[J]. Proceedings of SPIE, 1994, 2312:202-211. doi: 10.1117/12.197377
    [34] VOELZ D G, BUSH K A, IDELL P S. Illumination coherence effects in laser-speckle imaging:modeling and experimental demonstration[J]. Applied Optics, 1997, 36(8):1781-1788. doi: 10.1364/AO.36.001781
    [35] 李希宇, 高昕, 唐嘉, 等.面向高轨目标成像的强度相干阵列优化[J].光子学报, 2015, 44(6):0611002. http://d.old.wanfangdata.com.cn/Periodical/gzxb201506017

    LI X Y, GAO X, TANG J, et al.. Amelioration of intensity correlation array towards high-orbit satellite imaging[J]. Acta Photonica Sinica, 2015, 44(6):0611002.(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gzxb201506017
    [36] 高昕, 冯灵洁, 陆长明, 等.高阶光学强度相干成像的相位恢复方法改进[J].光子学报, 2017, 46(6):0610001. http://d.old.wanfangdata.com.cn/Periodical/gzxb201706017

    GAO X, FENG L J, LU CH M, et al.. Improved phase retrieval method of high-order optical intensity correlation imaging[J]. Acta Photonica Sinica, 2017, 46(6):0610001.(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gzxb201706017
    [37] 李希宇, 高昕, 唐嘉, 等.面向高轨目标的强度相干成像技术研究[J].飞行器测控学报, 2014, 33(4):348-353. http://d.old.wanfangdata.com.cn/Periodical/fxqckxb201404013

    LI X Y, GAO X, TANG J, et al.. Intensity correlation imaging technology for high earth orbit objects[J]. Journal of Spacecraft TT&C Technology, 2014, 33(4):348-353.(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/fxqckxb201404013
    [38] RESTAINO S R, ANDREWS J R. Comparison of michelson interferometer, intensity interferometer, and filled aperture telescope SNR for GEO satellites detection[J]. Proceedings of SPIE, 2011, 8165:81650R. doi: 10.1117/12.896622
    [39] FAIRCHILD P, PAYNE I. A survey of conventional and unconventional methods for imaging GEOS with ground based interferometers and large aperture telescopes[C]. Proceedings of 2013 IEEE Aerospace Conference, IEEE, 2013: 1-7.
    [40] LUKESH G W, CHANDLER S M, VOELZ D G. Analysis of satellite laser optical cross sections from the active imaging testbed[J]. Proceedings of SPIE, 2002, 4538:24-33. doi: 10.1117/12.454414
    [41] HUTCHIN R A. Sheared coherent interferometric photography:a technique for lensless imaging[J]. Proceedings of SPIE, 1993, 2029:161-168. doi: 10.1117/12.161993
    [42] SICA L. Sheared-beam imaging:an evaluation of its optical compensation of thick atmospheric turbulence[J]. Applied Optics, 1996, 35(2):264-272. doi: 10.1364/AO.35.000264
    [43] BUSH K A, BARNARD C C, VOELZ D G. Simulations of atmospheric anisoplanatism effects on laser-sheared beam imaging[J]. Proceedings of SPIE, 1996, 2828:362-373. doi: 10.1117/12.254184
    [44] FIENUP J R. Coherent lensless imaging[C]. Proceedings of Imaging Systems 2010, Optical Society of America, 2010.
    [45] OPC. Speckle-based imaging[EB/OL]. http://www.opci.com/technologies/speckle-based-imaging[2018-04-15].
    [46] 陈明徕, 罗秀娟, 张羽, 等.基于全相位谱分析的剪切光束成像目标重构[J].物理学报, 2017, 66(2):024203. http://d.old.wanfangdata.com.cn/Periodical/wlxb201702016

    CHEN M L, LUO X J, ZHANG Y, et al.. Sheared-beam imaging target reconstruction based on all-phase spectrum analysis[J]. Acta Physica Sinica, 2017, 66(2):024203.(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201702016
    [47] 陆长明, 陈明徕, 罗秀娟, 等.四光束剪切相干成像目标重构算法研究[J].物理学报, 2017, 66(11):114201. doi: 10.7498/aps.66.114201

    LU CH M, CHEN M L, LUO X J, et al.. Target reconstruction algorithm for four-beam sheared coherent imaging[J]. Acta Physica Sinica, 2017, 66(11):114201.(in Chinese). doi: 10.7498/aps.66.114201
    [48] 兰富洋, 罗秀娟, 陈明徕, 等.剪切光束成像技术对纵深目标的成像[J].物理学报, 2017, 66(20):204202. doi: 10.7498/aps.66.204202

    LAN F Y, LUO X J, CHEN M L, et al.. Sheared-beam imaging of object with depth information[J]. Acta Physica Sinica, 2017, 66(20):204202.(in Chinese). doi: 10.7498/aps.66.204202
    [49] HOLMES R B, MA S, BHOWMIK A, et al.. Analysis and simulation of a synthetic-aperture technique for imaging through a turbulent medium[J]. Journal of the Optical Society of America A, 1996, 13(2):351-364. doi: 10.1364/JOSAA.13.000351
    [50] MATHIS J, STAPP J, CUELLAR E L, et al.. Field experiment performance of the receiver elements for a Fourier telescopy imaging system[J]. Proceedings of SPIE, 2005, 5896:58960F. doi: 10.1117/12.639802
    [51] CUELLAR E L, STAPP J, COOPER J. Laboratory and field experimental demonstration of a Fourier telescopy imaging system[J]. Proceedings of SPIE, 2005, 5896:58960D. doi: 10.1117/12.615444
    [52] FORD S D, VOELZ D G, GAMIZ V L, et al.. Geo light imaging national testbed(GLINT):past, present, and future[J]. Proceedings of SPIE, 1999, 3815:2-10. doi: 10.1117/12.364119
    [53] GAMIZ V L, HOLMES R B, CZYZAK S R, et al.. GLINT:program overview and potential science objectives[J]. Proceedings of SPIE, 2000, 4091:304-315. doi: 10.1117/12.405789
    [54] BUSH K A, BARNARD C C. Wavelength-dependent radiometric modeling for an active geosynchronous satellite imaging system[J]. Proceedings of SPIE, 2000, 4091:333-344. doi: 10.1117/12.405792
    [55] LONG S M. Satellite motion determination by measuring selected frequency triplets with a Fourier telescopy facility[J]. Proceedings of SPIE, 2000, 4091:345-354. doi: 10.1117/12.405793
    [56] THORNTON M A, OLDENETTEL J R, HULT D W, et al.. GEO light imaging national testbed(GLINT) heliostat design and testing status[J]. Proceedings of SPIE, 2002, 4489:78-88. doi: 10.1117/12.453217
    [57] BELEN'KⅡ M S. Coherence degradation of a speckle field and turbulence effects on Fourier telescopy imaging system[J]. Proceedings of SPIE, 2002, 4489:48-59. doi: 10.1117/12.453241
    [58] BELEN'KⅡ M S, HUGHES K, BRINKLEY T J, et al.. Residual turbulent scintillation effect and impact of turbulence on the fourier telescopy system[J]. Proceedings of SPIE, 2004, 5160:56-67. doi: 10.1117/12.509678
    [59] STAPP J, SPIVEY B, CHEN L, et al.. Simulation of a Fourier telescopy imaging system for objects in low earth orbit[J]. Proceedings of SPIE, 2006, 6307:630701. doi: 10.1117/12.676284
    [60] CUELLAR E L, COOPER J, MATHIS J, et al.. Laboratory demonstration of a multiple beam Fourier telescopy imaging system[J]. Proceedings of SPIE, 2008, 7094:70940G. doi: 10.1117/12.798533
    [61] MANDROSOV V I, BAKUT P A, GAMIZ V L. Compensation of strongly heterogeneous atmospheric distortions in Fourier telescopy of remote rough objects[J]. Proceedings of SPIE, 2001, 4167:192-197. doi: 10.1117/12.413822
    [62] MANDROSOV V I. Fourier telescopy imaging through strongly inhomogeneous atmosphere at high level of additive noises[J]. Proceedings of SPIE, 2002, 4538:128-134. doi: 10.1117/12.454399
    [63] MANDROSOV V I. Compact schematic of high-resolution Fourier telescopy imaging in a strongly inhomogeneous atmosphere[J]. Proceedings of SPIE, 2002, 4726:295-303. doi: 10.1117/12.477037
    [64] RHODES W T, PAVA D, DALGLEISH F, et al.. High-resolution imaging through horizontal path turbulence[J]. Proceedings of SPIE, 2011, 8122:812202. doi: 10.1117/12.895405
    [65] RHODES W T. Time-average Fourier telescopy:a scheme for high-resolution imaging through horizontal-path turbulence[J]. Applied Optics, 2012, 51(4):A11-A16. doi: 10.1364/AO.51.000A11
    [66] RHODES W T. Optical imaging through horizontal-path turbulence: a new solution to a difficult problem[C]. Proceedings of Imaging Systems and Applications 2011, Optical Society of America, 2011.
    [67] 罗秀娟, 马彩文, 张羽, 等.低轨道运动目标傅里叶望远镜发射器设计[J].深圳大学学报理工版, 2011, 28(4):325-329. http://d.old.wanfangdata.com.cn/Periodical/szdxxb201104006

    LUO X J, MA C W, ZHANG Y, et al.. Design proposal of a Fourier telescopy transmitter for moving objects in low earth orbit[J]. Journal of Shenzhen University Science and Engineering, 2011, 28(4):325-329.(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/szdxxb201104006
    [68] 董磊, 王斌, 刘欣悦.多光束傅里叶望远镜的关键技术[J].中国光学与应用光学, 2010, 3(5):440-445. doi: 10.3969/j.issn.2095-1531.2010.05.004

    DONG L, WANG B, LIU X Y. Introduction to key techniques of multiple beam Fourier telescopy[J]. Chinese Journal of Optics and Applied Optics, 2010, 3(5):440-445.(in Chinese) doi: 10.3969/j.issn.2095-1531.2010.05.004
    [69] 李杨, 相里斌, 张文喜.湍流大气中激光传输对傅里叶望远镜成像质量的影响[J].强激光与粒子束, 2013, 25(2):292-296. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201302005

    LI Y, XIANG L B, ZHANG W X. Effects of laser propagation through atmospheric turbulence on imaging quality in Fourier telescopy[J]. High Power Laser and Particle Beams, 2013, 25(2):292-296.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201302005
    [70] 叶溯, 刘艺, 吴健.傅里叶望远术中天线阵列配置对成像质量的影响[J].强激光与粒子束, 2011, 23(3):611-616. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201103010

    YE S, LIU Y, WU J. Effects of antenna array configurations on imaging quality in Fourier telescopy[J]. High Power Laser and Particle Beams, 2011, 23(3):611-616.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201103010
    [71] 陈卫, 黎全, 王雁桂.傅里叶望远术成像系统的实验研究[J].光学学报, 2011, 31(3):0311001. http://cdmd.cnki.com.cn/Article/CDMD-90002-1011279576.htm

    CHEN W, LI Q, WANG Y G. Experimental research of Fourier telescopy imaging system[J]. Acta Optica Sinica, 2011, 31(3):0311001.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-90002-1011279576.htm
    [72] YU SH H, DONG L, LIU X Y, et al.. Field experiment and image reconstruction using a Fourier telescopy imaging system over a 600-m-long horizontal path[J]. Applied Optics, 2016, 55(24):6694-6705. doi: 10.1364/AO.55.006694
    [73] ZHANG Y, LUO X J, CAO B, et al.. Research on object signal sampling and reconstruction based on laser beat frequency[J]. Procedia Engineering, 2012, 29:2421-2426. doi: 10.1016/j.proeng.2012.01.325
    [74] 罗秀娟, 张羽, 孙鑫, 等.大气环境中傅里叶望远镜系统能量设计[J].光学学报, 2013, 33(8):801004. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201308004

    LUO X J, ZHANG Y, SUN X, et al.. Energy design of Fourier telescope system in the atmospheric environment[J]. Acta Optica Sinica, 2013, 33(8):801004.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201308004
    [75] 司庆丹, 罗秀娟, 曾志红.相干场成像原理局限性分析[J].物理学报, 2014, 63(10):104203. doi: 10.7498/aps.63.104203

    SI Q D, LUO X J, ZENG ZH H. Analyses on limitations of coherent field imaging principle[J]. Acta Physica Sinica, 2014, 63(10):104203.(in Chinese) doi: 10.7498/aps.63.104203
    [76] 张羽, 罗秀娟, 夏爱利, 等.傅里叶望远镜成像质量分析与评价[J].光子学报, 2014, 43(3):0311001. http://d.old.wanfangdata.com.cn/Periodical/gzxb201403029

    ZHANG Y, LUO X J, XIA A L, et al.. Image quality evaluation and analysis in Fourier telescopy for laboratory demonstration[J]. Acta Photonica Sinica, 2014, 43(3):0311001.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gzxb201403029
    [77] 司庆丹, 罗秀娟, 袁雪.激光傅里叶望远镜中重建图像矩阵规模的设定[J].激光与光电子学进展, 2014, 51(11):110701. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201411013

    SI Q D, LUO X J, YUAN X. Configuration of the size of the reconstructed image matrix in Fourier telescope[J]. Laser & Optoelectronics Progress, 2014, 51(11):110701.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201411013
    [78] 罗秀娟, 张羽, 高存孝, 等.傅里叶望远镜激光发射系统性能分析[J].光学学报, 2015, 35(3):0314001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201503020

    LUO X J, ZHANG Y, GAO C X, et al.. Performance analysis of laser transmitting system for Fourier telescope[J]. Acta Optica Sinica, 2015, 35(3):0314001.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201503020
    [79] 程志远, 马彩文, 罗秀娟, 等.抑制孔径间距误差影响的相干场成像质量提升方法研究[J].物理学报, 2015, 64(12):124203. doi: 10.7498/aps.64.124203

    CHENG ZH Y, MA C W, LUO X J, et al.. Improving coherent field imaging quality by suppressing the influence of transmitting aperture spacing error[J]. Acta Physica Sinica, 2015, 64(12):124203.(in Chinese) doi: 10.7498/aps.64.124203
    [80] 程志远, 罗秀娟, 马彩文, 等.相干场成像探测器噪声定量化占比模型[J].光子学报, 2015, 44(4):0407002. http://d.old.wanfangdata.com.cn/Periodical/gzxb201504018

    CHENG ZH Y, LUO X J, MA C W, et al.. Detector noise quantitative ratio modelling in coherent field imaging[J]. Acta Photonica Sinica, 2015, 44(4):0407002.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gzxb201504018
    [81] 张羽, 罗秀娟, 曹蓓, 等.傅里叶望远镜发射阵列的冗余度及"冗余度-斯特列尔比-目标信息"特性分析[J].物理学报, 2016, 65(11):114201. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201611015

    ZHANG Y, LUO X J, CAO B, et al.. Analysis of the redundancy of Fourier telescopy transmitter array and its redundancy-strehl ratio-target texture distribution characteristic[J]. Acta Physica Sinica, 2016, 65(11):1114201.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201611015
    [82] 曹蓓, 罗秀娟, 司庆丹, 等.相干场成像四光束相位闭合算法研究[J].物理学报, 2015, 64(5):054204. http://d.old.wanfangdata.com.cn/Periodical/wlxb201505019

    CAO B, LUO X J, SI Q D, et al.. Four-phase closure algorithm for coherent field imaging[J]. Acta Physica Sinica, 2015, 64(5):054204.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/wlxb201505019
    [83] 曹蓓, 罗秀娟, 陈明徕, 等.相干场成像全相位目标直接重构法[J].物理学报, 2015, 64(12):124205. doi: 10.7498/aps.64.124205

    CAO B, LUO X J, CHEN M L, et al.. All-phase target reconstruction method for coherent field imaging[J]. Acta Physica Sinica, 2015, 64(12):124205.(in Chinese) doi: 10.7498/aps.64.124205
    [84] CAO B, LUO X J, ZHANG Y, et al.. Compressed sensing sparse reconstruction for coherent field imaging[J]. Chinese Physics B, 2016, 25(4):040701. doi: 10.1088/1674-1056/25/4/040701
    [85] 曾志红, 罗秀娟, 王保峰, 等.傅里叶望远镜大气湍流模拟实验[J].光子学报, 2014, 43(6):0601002. http://d.old.wanfangdata.com.cn/Periodical/gzxb201406037

    ZENG ZH H, LUO X J, WANG B F, et al.. Laboratory simulation of atmosphere turbulence for Fourier telescopy[J]. Acta Photonica Sinica, 2014, 43(6):0601002.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gzxb201406037
    [86] ZENG ZH H, LUO X J, XIA A L, et al.. Rytov variance equivalence through extended atmospheric turbulence and an arbitrary thickness phase screen in non-Kolmogorov turbulence[J]. Optik, 2014, 125(15):4092-4097. doi: 10.1016/j.ijleo.2014.01.106
    [87] ZENG ZH H, LUO X J, XIA A L, et al.. Inner scale effect on scintillation index of flat-topped beam in non-Kolmogorov weak turbulence[J]. Applied Optics, 2015, 54(10):2630-2638. doi: 10.1364/AO.54.002630
    [88] 张羽, 罗秀娟, 刘辉, 等.远程多光束激光相干场成像拍频误差校正研究[J].物理学报, 2018, 67(4):044201. http://d.old.wanfangdata.com.cn/Periodical/wlxb201804010

    ZHANG Y, LUO X J, LIU H, et al.. Beat frequency error rectifying in multi-beam laser coherent remote imaging[J]. Acta Physica Sinica, 2018, 67(4):044201.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/wlxb201804010
    [89] YOUNG J, HANIFF C, BUSCHER D. Interferometric imaging of geo-synchronous satellites with ground-based telescopes[C]. Proceedings of 2013 IEEE Aerospace Conference, IEEE, 2013: 1-9.
  • 加载中
图(10)
计量
  • 文章访问数:  2785
  • HTML全文浏览量:  1385
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-24
  • 修回日期:  2018-11-20
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!