[1] ZOU X H, LU B, PAN W, et al. Photonics for microwave measurements[J]. Laser &Photonics Reviews, 2016, 10(5): 711-734.
[2] XIE X J, DAI Y T, XU K, et al. Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators[J]. IEEE Photonics Journal, 2012, 4(4): 1196-1202. doi:  10.1109/JPHOT.2012.2207380
[3] JI N, MAGEE J C, BETZIG E. High-speed, low-photodamage nonlinear imaging using passive pulse splitters[J]. Nature Methods, 2008, 5(2): 197-202. doi:  10.1038/nmeth.1175
[4] DESURVIRE E, KAZMIERSKI C, LELARGE F, et al. Science and technology challenges in XXIst century optical communications[J]. Comptes Rendus Physique, 2011, 12(4): 387-416. doi:  10.1016/j.crhy.2011.04.009
[5] 王治昊, 余锦, 樊仲维,等. 全固态被动调Q皮秒激光技术研究进展[J]. 发光学报,2013,34(7):900-910. doi:  10.1038/nphoton.2007.139

WANG H ZH, YU J, FAN ZH W, et al. Research progress of all-solid-state passively Q-switched picosecond laser technology[J]. Chinese Journal of Luminescence, 2013, 34(7): 900-910. (in Chinese) doi:  10.1038/nphoton.2007.139
[6] GHELFI P, LAGHEZZA F, SCOTTI F, et al. A fully photonics-based coherent radar system[J]. Nature, 2014, 507(7492): 341-345. doi:  10.1038/nature13078
[7] 康喆, 刘明奕, 刘承志,等. 基于微纳光纤-单壁碳纳米管可饱和吸收体的被动调Q掺镱光纤激光器[J]. 发光学报,2017,38(5):630-635. doi:  10.1364/OL.29.000250

KANG ZH, LIU M Y, LIU CH ZH, et al. Passively Q-switched Yb3+ -doped fiber laser based on microfiber-single wall carbon nanotube saturable absorber[J]. Chinese Journal of Luminescence, 2017, 38(5): 630-635. (in Chinese) doi:  10.1364/OL.29.000250
[8] 崔铮, 陈毅, 姚宝权,等. 基于多层石墨烯可饱和吸收体的被动调Q Ho∶YAG激光器[J]. 发光学报,2016,37(6):696-700. doi:  10.1126/science.288.5466.635

CUI ZH, CHEN Y, YAO B Q, et al. Passively Q-switched Ho∶YAG laser with multilayer graphene-based saturable absorber[J]. Chinese Journal of Luminescence, 2016, 37(6): 696-700. (in Chinese) doi:  10.1126/science.288.5466.635
[9] GORDON E I, RIGDEN J D. the fabry-perot electrooptic modulator[J]. Bell System Technical Journal, 1963, 42(1): 155-179. doi:  10.1002/j.1538-7305.1963.tb04006.x
[10] FERDOUS F, MIAO H X, LEAIRD D E, et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs[J]. Nature Photonics, 2011, 5(12): 770-776. doi:  10.1038/nphoton.2011.255
[11] PAPP S B, DIDDAMS S A. Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb[J]. Physical Review A, 2011, 84(5): 053833. doi:  10.1103/PhysRevA.84.053833
[12] WU R, SUPRADEEPA V R, LONG C M, et al. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms[J]. Optics Letters, 2010, 35(19): 3234-3236. doi:  10.1364/OL.35.003234
[13] WU R, TORRES-COMPANY V, LEAIRD D E, et al. Supercontinuum-based 10-GHz flat-topped optical frequency comb generation[J]. Optics Express, 2013, 21(5): 6045-6052. doi:  10.1364/OE.21.006045
[14] DOU Y J, ZHANG H M, YAO M Y. Generation of flat optical-frequency comb using cascaded intensity and phase modulators[J]. IEEE Photonics Technology Letters, 2012, 24(9): 727-729. doi:  10.1109/LPT.2012.2187330
[15] LI J P, LI X, ZHANG X G, et al. Analysis of the stability and optimizing operation of the single-side-band modulator based on re-circulating frequency shifter used for the T-bit/s optical communication transmission[J]. Optics Express, 2010, 18(17): 17597-17609. doi:  10.1364/OE.18.017597
[16] TIAN F, ZHANG X G, LI J P, et al. Generation of 50 stable frequency-locked optical carriers for Tb/s multicarrier optical transmission using a recirculating frequency shifter[J]. Journal of Lightwave Technology, 2011, 29(8): 1085-1091. doi:  10.1109/JLT.2011.2109053
[17] LI J P, MA H T, LI ZH H, et al. Optical frequency comb generation based on dual-polarization IQ modulator shared by two polarization-orthogonal recirculating frequency shifting loops[J]. IEEE Photonics Journal, 2017, 9(5): 7906110.
[18] ZHANG J W, YU J J, CHI N, et al. Stable optical frequency-locked multicarriers generation by double recirculating frequency shifter loops for Tb/s communication[J]. Journal of Lightwave Technology, 2012, 30(24): 3938-3945. doi:  10.1109/JLT.2012.2206371