[1] ABBE E. Beitrge zur theorie des mikroskops und der mikroskopischen wahrnehmung[J]. Archiv für mikroskopische Anatomie, 1873, 9(1):413-418. [2] STODOLNA A, ROUZ E A, L PINE F, et al.. Hydrogen atoms under magnification:direct observation of the nodal structure of stark states[J]. Phys. Rev. Lett., 2013, 110(21):213001-5. [3] HANSSEN K Ø, SCHULER B, WILLIAMS A J, et al.. A combined atomic force microscopy and computational approach for the structural elucidation of breitfussin a and b: Highly modified halogenated dipeptides from thuiaria breitfussi[J]. Angewandte Chemie, 2012, 124(49):12404-12407. [4] BETZIG E, TRAUTMAN J K. Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit[J]. Science, 1992, 257(5067):189-195. [5] BOLTASSEVA A, ATWATER H A. Low-loss plasmonic metamaterials[J]. Science, 2011, 331(6015):290-291. [6] PENDRY J B. Negative refraction makes a perfect lens[J]. Phys. Rev. Lett., 2000, 85(18):3966-3969. [7] ZHANG X, LIU Z. Superlenses to overcome the diffraction limit[J]. Nature Materials, 2008, 7(6):435-441. [8] HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission:stimulated-emission-depletion fluorescence microscopy[J]. Optics Lett., 1994, 19(11):780-782. [9] BERNING S, WILLIG K I, STEFFENS H, et al.. Nanoscopy in a living mouse brain[J]. Science, 2012, 335(6068):551. [10] RITTWEGER E, HAN K Y, IRVINE S E, et al.. Sted microscopy reveals crystal colour centres with nanometric resolution[J]. Nat. Photon., 2009, 3(3):144-147. [11] JONES S A, SHIM S H, HE J, et al.. Fast, three-dimensional super-resolution imaging of live cells[J]. Nature Methods, 2011, 8(6):499-505. [12] RUST M J, BATES M, ZHUANG X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy(storm)[J]. Nature Methods, 2006, 3(10):793-796. [13] SUBACH F V, PATTERSON G H, MANLEY S, et al.. Photoactivatable mcherry for high-resolution two-color fluorescence microscopy[J]. Nat. Meth., 2009, 6(2):153-159. [14] BETZIG E, PATTERSON G H, SOUGRAT R, et al.. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793):1642-1645. [15] GUSTAFSSON M G L. Nonlinear structured-illumination microscopy:wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37):13081-13086. [16] BATES M, HUANG B, DEMPSEY G T, et al.. Multicolor super-resolution imaging with photo-switchable fluorescent probes[J]. Science, 2007, 317(5845):1749. [17] HUANG B, BABCOCK H, ZHUANG X. Breaking the diffraction barrier:super-resolution imaging of cells[J]. Cell, 2010, 143(7):1047-1058. [18] ZHUANG X. Nano-imaging with storm[J]. Nature Photonics, 2009, 3(7):365. [19] 石顺祥, 王学恩, 刘劲松. 物理光学与应用光学[M].西安:西安电子科技大学出版社, 2008. SHI SH X, WANG X E, LIU J S. Physical Optics and Applied Optics[M]. Xi'an:Xidian University Press, 2008.(in Chinese) [20] GOODMAN J W. Introduction to Fourier Optics[M]. New York:McGRAW-HILL, 1996. [21] LAGENDIJK A, VAN TIGGELEN B, WIERSMA D S. Fifty years of anderson localization[J]. Phys. Today, 2009, 62(8):24-29. [22] WIERSMA D S, BARTOLINI P, LAGENDIJK A, et al.. Localization of light in a disordered medium[J]. Nature, 1997, 390(6661):671-673. [23] SKIPETROV S E. Langevin description of speckle dynamics in nonlinear disordered media[J]. Physical Review E, 2003, 67(1):016601. [24] GUAN Y, KATZ O, SMALL E, et al.. Polarization control of multiply scattered light through random media by wavefront shaping[J]. Optics Letters, 2012, 37(22):4663-4665. [25] TRIPATHI S, PAXMAN R, BIFANO T, et al. Vector transmission matrix for the polarization behavior of light propagation in highly scattering media[J]. Optics Express, 2012, 20(14):16067-16076. [26] PAUDEL H P, STOCKBRIDGE C, MERTZ J, et al.. Focusing polychromatic light through strongly scattering media[J]. Opt. Express, 2013, 21(14):17299-17308. [27] KIM D, SEO K, CHOI W, et al.. Detection of evanescent waves using disordered nanowires[J]. Optics Communications, 2013, 297:1-6. [28] ISHIMARU A. Wave Propagation and Scattering in Random Media[M]. New York:John Wiley & Sons, 1999. [29] SHENG P. Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena[M]. Berlin Heidelberg:Springer, 2006. [30] TOURIN A, FINK M, DERODE A. Multiple scattering of sound[J]. Waves in Random Media, 2000, 10(4):R31-R60. [31] LEE P A, RAMAKRISHNAN T V. Disordered electronic systems[J]. Rev. Modern Physics, 1985, 57(2):287. [32] MARGERIN L, CAMPILLO M, VAN TIGGELEN B. Radiative transfer and diffusion of waves in a layered medium:new insight into coda q[J]. Geophysical J. International, 1998, 134(2):596-612. [33] FINK M. Acoustic time-reversal mirrors. Imaging of Complex Media with Acoustic and Seismic Waves[C]. Imaging of Complex Media with Acoustic and Seismic Waves, Berlin, Germany, 26 April-8 May, 1999, 2002:17-42. [34] FINK M. Time-reversed acoustics[J]. Sci. Am., 1999, 281(5):91-97. [35] LEROSEY G, DE ROSNY J, TOURIN A, et al.. Time reversal of electromagnetic waves[J]. Phys. Rev. Lett., 2004, 92(19):193904. [36] LEROSEY G, DE ROSNY J, TOURIN A, et al.. Focusing beyond the diffraction limit with far-field time reversal[J]. Science, 2007, 315(5815):1120-1122. [37] DE ROSNY J, FINK M. Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink[J]. Phys. Rev. Lett., 2002, 89(12):124301. [38] FINK M, TANTER M. Multiwave imaging and super resolution[J]. Phys. Today, 2010, 63:28. [39] PRADA C, FINK M. Eigenmodes of the time reversal operator:a solution to selective focusing in multiple-target media[J]. Wave Motion, 1994, 20(2):151-163. [40] GOUPILLAUD P L. An approach to inverse filtering of near-surface layer effects from seismic records[J]. Geophysics, 1961, 26(6): 54-760. [41] PAULRAJ A, NABAR R, GORE D. Introduction to Space-time WIRELESS COMmunications[M]. Cambridge, UK:Cambridge University Press, 2003. [42] POPOFF S M, LEROSEY G, FINK M, et al.. Controlling light through optical disordered media:transmission matrix approach[J]. New J. Phys., 2011, 13:123021. [43] LEMOULT F, FINK M, LEROSEY G. A polychromatic approach to far-field superlensing at visible wavelengths[J]. Nat. Commun., 2012, 3:889. [44] VELLEKOOP I M, MOSK A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 2007, 32(16):2309-2311. [45] YAQOOB Z, PSALTIS D, FELD M S, et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nat. Photon., 2008, 2(2):110-115. [46] VELLEKOOP I M, LAGENDIJK A, MOSK A P. Exploiting disorder for perfect focusing[J]. Nature Photonics, 2010, 4(5):320-322. [47] 滕树云, 刘立人, 云茂金, 等. 提高能量密度的超衍射极限激光光束相位补偿技术[J]. 光学学报, 2005, 25(4):439-442. TENG SH Y, LIU L R, YUN M J, et al.. Phase compensative technology for the beam beyond the diffraction limits with high power[J]. Acta Optica Sinica, 2005, 25(4):439-442.(in Chinese) [48] FREUND I, ROSENBLUH M, FENG S. Memory effects in propagation of optical waves through disordered media[J]. Phys. Rev. Lett., 1988, 61(20):2328-2331. [49] POPOFF S M, LEROSEY G, CARMINATI R, et al. Measuring the transmission matrix in optics:an approach to the study and control of light propagation in disordered media[J]. Physical Review Lett., 2010, 104(10):100601-4: [50] VAN PUTTEN E, AKBULUT D, BERTOLOTTI J, et al.. Scattering lens resolves sub-100 nm structures with visible light[J]. Physical Review Letters, 2011, 106(19):193905. [51] AKBULUT D, HUISMAN T J, VAN PUTTEN E G, et al.. Focusing light through random photonic media by binary amplitude modulation[J]. Opt. Express, 2011, 19(5):4017-4029. [52] VELLEKOOP I M, AEGERTER C M. Scattered light fluorescence microscopy: Imaging through turbid layers[J]. Optics Letters, 2010, 35(8):1245-1247. [53] MOSK A. Imaging and focusing through turbid media[C]. OSA Technical Digest(online). 2013:JW1A.1. [54] LEROSEY G, FINK M. Acousto-optic imaging:merging the best of two worlds[J]. Nature Photonics, 2013, 7(4):265-267. [55] JUDKEWITZ B, WANG Y M, HORSTMEYER R, et al.. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light(trove)[J]. Nature Photonics, 2013, 7(4):300-305. [56] CUI M. Parallel wavefront optimization method for focusing light through random scattering media[J]. Optics Letters, 2011, 36(6):870-872. [57] CUI M. A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media[J]. Optics Express, 2011, 19(4):2989-2995. [58] CONKEY D B, CARAVACA-AGUIRRE A M, NIV E, et al.. High-speed phase-control of wavefronts with binary amplitude dmd for light control through dynamic turbid media[C]. SPIE MOEMS-MEMS, 2013:861701-6. [59] MCDOWELL E J, CUI M, VELLEKOOP I M, et al.. Turbidity suppression from the ballistic to the diffusive regime in biological tissues using optical phase conjugation[J]. J. Biomedical Optics, 2010, 15(2):025004. [60] YAQOOB Z, PSALTIS D, FELD M S, et al.. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics, 2008, 2(2):110-115. [61] JANG M, SENTENAC A, YANG C. Optical phase conjugation(opc)-assisted isotropic focusing[J]. Optics Express, 2013, 21(7):8781-8792. [62] POPOFF S M, LEROSEY G, FINK M, et al.. Image transmission through an opaque material[J]. Nature Communications, 2010, 1(1):81. [63] MAIRE G, DRSEK F, GIRARD J, et al. Experimental demonstration of quantitative imaging beyond abbe's limit with optical diffraction tomography[J]. Phys. Rev. Lett., 2009, 102(21):213905. [64] MAIRE G, GIRARD J, DRSEK F, et al.. Experimental inversion of optical diffraction tomography data with a nonlinear algorithm in the multiple scattering regime[J]. J. Modern Optics, 2010, 57(9):746-755. [65] MONTALDO G, TANTER M, FINK M. Real time inverse filter focusing through iterative time reversal[J]. Acoustical Society of America, 2004, 115(2):768-775. [66] TANTER M, THOMAS J L, FINK M. Time reversal and the inverse filter[J]. J. Acoust. Soc. Am., 2000, 108:223-234. [67] MOSK A P, LAGENDIJK A, LEROSEY G, et al.. Controlling waves in space and time for imaging and focusing in complex media[J]. Nature Photonics, 2012, 6(5):283-292. [68] CHOI Y, YANG T D, FANG-YEN C, et al.. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium[J]. Phys. Rev. Lett., 2011, 107(2):023902. [69] HULST H C, VAN DE HULST H. Light Scattering:By Small Particles[M]. Courier Dover Publications, 1957. [70] PUTTEN E G V. Focussing of light inside turbid media[C]. Enschede:University of Twente Master of Science, 2007. [71] VELLEKOOP I M, PUTTEN E G V, LAGENDIJK A, et al.. Demixing light paths inside disordered metamaterials[J]. Optics Express, 2008, 16(1):67-80. [72] GOODMAN J W. Statistical Optics[M]. New York:Wiley-Interscience, 1985. [73] GUMBEL E, GREENWOOD J A, DURAND D. The circular normal distribution:theory and tables[J]. J. American Statistical Association, 1953, 48(261):131-152. [74] 黄远辉. 光学超衍射极限成像中随机介质传输矩阵获取方法研究[D].西安:西安电子科技大学, 2013. HUANG Y H. Optical transmission matrix measurement of random scattering media for diffraction-limit breaking imaging[D]. Xi'an:Xidian University, 2013.(in Chinese) [75] CHOI W, FANG-YEN C, BADIZADEGAN K, et al.. Tomographic phase microscopy[J]. Nature Methods, 2007, 4(9):717-719. [76] TOURIN A, DERODE A, FINK M. Sensitivity to perturbations of a time-reversed acoustic wave in a multiple scattering medium[J]. Phys. Rev. Lett., 2001, 87(27):274301. [77] LEMOULT F, LEROSEY G, DE ROSNY J, et al.. Manipulating spatiotemporal degrees of freedom of waves in random media[J]. Phys. Rev. Lett., 2009, 103(17):173902. [78] AUBRY A, DERODE A. Singular value distribution of the propagation matrix in random scattering media[J]. Waves Random and Complex Media, 2010, 20(3):333-363. [79] MARCHENKO V A, PASTUR L A. Distribution of eigenvalues for some sets of random matrices[J]. Sbornik:Mathematics, 1967, 72(114):507-536. [80] WIGNER E P. Random matrices in physics[J]. Society Industrial and Appl. Mathematics Review, 1967, 9(1):1-23. [81] CHOI W, MOSK A P, PARK Q H, et al.. Transmission eigenchannels in a disordered medium[J]. Phys. Rev. B, 2011, 83(13):134207. [82] KIM M, CHOI Y, YOON C, et al.. Maximal energy transport through disordered media with the implementation of transmission eigenchannels[J]. Nature Photonics, 2012, 6(9):583-587. [83] KOHLGRAF-OWENS T, DOGARIU A. Finding the field transfer matrix of scattering media[J]. Optics Express, 2008, 16(17):13225-13232. [84] VAN PUTTEN E G, MOSK A P. Viewpoint:the information age in optics:measuring the transmission matrix[J]. Physics, 2010, 3:22.