[1] GEBBIE H A, HARDING W R, HILSUM C, et al.. Atmospheric transmission in the 1 to 14 μ region[J]. Proceedings of the Royal Society of London A, 1951, 206(1084):87-107. doi:  10.1098/rspa.1951.0058
[2] SCOTT D C, HERMAN R L, WEBSTER C R, et al.. Airborne Laser Infrared Absorption Spectrometer(ALIAS-II) for in situ atmospheric measurements of N2O, CH4, CO, HCL, and NO2 from balloon or remotely piloted aircraft platforms[J]. Applied Optics, 1999, 38(21):4609-4622. doi:  10.1364/AO.38.004609
[3] 黄晖, 潘舜臣, 姬荣斌, 等.射线探测用碲锌镉晶体及其器件研究[J].发光学报, 2005, 26(6):807-812. http://www.cnki.com.cn/Article/CJFDTOTAL-FGXB200506024.htm

HUANG H, PAN SH CH, JI R B, et al.. Research on the cadm ium zinc telluride crystal and its device for radiative ray detection[J]. Chinese J. Luminescence, 2005, 26(6):807-812.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-FGXB200506024.htm
[4] 高娟娟, 李夏, 高松.石英光子晶体光纤中高功率中红外超连续谱的产生[J].发光学报, 2015, 36(2):226-230. http://www.cnki.com.cn/Article/CJFDTOTAL-FGXB201502020.htm

GAO J J, LI X, GAO S. High power mid-infrared supercontinuum generation in cilica photonic crystal fiber[J]. Chinese J. luminescence, 2015, 36(2):226-230.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-FGXB201502020.htm
[5] 贾玉洁, 林摇健, 张文俊.氟化物对Er3+/Yb3+共掺的碲酸盐玻璃上转换和红外发光性能的影响[J].发光学报, 2014, 35(3):287-292. doi:  10.3788/fgxb

JIA Y J, LIN Y J, ZHANG W J. Effect of fluoride on up-conversion and infrared luminescence properties of Er3+/Yb3+ co-doped tellurite glass[J]. Chinese J. luminescence, 2014, 35(3):287-292.(in Chinese) doi:  10.3788/fgxb
[6] PAGE R H, SCHAFFERS K I. Cr2+-doped zinc chalcogenides asefficient, widely tunable mid-infrared lasers[J]. IEEE Journal of Quantum Electronics, 1997, 33(4):609-620. doi:  10.1109/3.563390
[7] WAGNER G J, CARRIG T J, JARMAN R H. High-efficiency, broadly tunable continuous-wave Cr2+:ZnSe laser[J]. Trends in Optics and Photonics, Advanced Solid-State Lasers, 1999, 26:427-435. https://www.osapublishing.org/abstract.cfm?id=118782
[8] SOROKIN E, SOROKINA I T. Tunable diode-pumped continuous-wave Cr2+:ZnSe laser[J]. Applied Physics Letters, 2002, 80(18):3289-3292. doi:  10.1063/1.1479214
[9] SOROKIN E, NAUMOV S, SOROKINA I T. Ultrabroadband infrared solid-state lasers[J]. IEEE J. Sel. Top. Quantum Electron, 2005, 11(3):690-713 doi:  10.1109/JSTQE.2003.850255
[10] CARRIG T J, WAGNER G J, ALFORD W J. Chromium-doped chalcogenide lasers[J]. SPIE, 2004, 5460:74-83 http://adsabs.harvard.edu/abs/2004SPIE.5460...74C
[11] IRINA T. SOROKINA. Cr2+-doped II-VI materials for lasers and nonlinear optics[J]. Optical Materials, 2004, 26:395-413. doi:  10.1016/j.optmat.2003.12.025
[12] SOROKINA I T, SOROKIN E, DI LIETO A. Efficent broadly tunable continuous-wave Cr2+:ZnSe laser[J]. J. Optical Society of America B, 2001, 18(7):926-931. doi:  10.1364/JOSAB.18.000926
[13] CARRIG T J, WAGNER G J, CARRIG. Power scaling of Cr2+:ZnSe lasers[J]. Trends in Optics and Photonics, Advanced Solid-State Lasers, 2001, 50:506-511. https://www.osapublishing.org/viewmedia.cfm?URI=ASSL-2001-WB1&seq=0
[14] MOSKALEV I S, FEDOROV V V, MIROV S B. Tunable, single-frequency, and multi-watt continuous-wave Cr2+:ZnSe lasers[J]. Optics Express, 2008, 16(6):4145-4153. doi:  10.1364/OE.16.004145
[15] STONEMAN R C, ESTEROWITZ L. Efficient 1.94-μm Tm:YALO laser[J]. IEEE J. Selected Topics in Quantum Electronics, 1995, 1:78-81. doi:  10.1109/2944.468368
[16] ELDER I F, PAYNE M J. Lasing in diode-pumped Tm:YAP, Tm, Ho:YAP and Tm, Ho:YLF[J]. Optics Communications, 1998, 145(6):329-339. http://www.sciencedirect.com/science/article/pii/S0030401897003878
[17] LI J, YANG S H, ZHANG H Y. Diode-pumped room temperature single frequency Tm:YAP laser[J]. Laser Physics Letters, 2010, 7:203-205. doi:  10.1002/lapl.v7:3
[18] 王云鹏, 王飞, 赵东旭.高温高压制备Cr2+:ZnSe单晶及其光学性质[J].中国光学, 2015, 8(4):615-620. doi:  10.3788/co.

WANG Y P, WANG F, ZHAO D X. Optical properties of Cr2+:ZnSe single crystal grown under high temperature and high pressure[J]. Chinese Optics, 2015, 8(4):615-620.(in Chinese) doi:  10.3788/co.