[1] SONG H J, NAGATSUMA T. Present and future of terahertz communications[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1:256-263. doi: 10.1109/TTHZ.2011.2159552
[2] JIANG Z, ZHANG Y, TAN Y W, et al.. Graphene in extremely high magnetic fields[J]. International Journal of Modern Physics B, 2007, 21:1123-1130. doi: 10.1142/S0217979207042549
[3] BOLOTIN K I, SIKES K J, JIANG Z, et al.. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146:351-355. doi: 10.1016/j.ssc.2008.02.024
[4] BONACCORSO F, SUN Z, HAZAN T, et al.. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4:611-622. doi: 10.1038/nphoton.2010.186
[5] GRIGORENKO A N, POLINI M, NOVOSELOV K S. Graphene plasmonics[J]. Nature Photonics, 2012, 6:749-758. doi: 10.1038/nphoton.2012.262
[6] KIM K S, ZHAO Y, JANG H, et al.. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457:706-710. doi: 10.1038/nature07719
[7] RANA F. Graphene terahertz plasmon oscillators[J]. IEEE Transactions on Nanotechnology, 2008, 7:91-99. doi: 10.1109/TNANO.2007.910334
[8] HE X J, LI T Y, WANG L, et al.. Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene[J]. Journal of Applied Physics, 2014, 115:17B903. doi: 10.1063/1.4866079
[9] YANG K, LIU S, AREZOOMANDAN S, et al.. Graphene-based tunable metamaterial terahertz filters[J]. Applied Physics Letters, 2014, 105:093105. doi: 10.1063/1.4894807
[10] GAO W, SHU J, REICHEL K, et al.. High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures[J]. Nano Letters, 2014, 14:1242-1248. doi: 10.1021/nl4041274
[11] LIN Y S, QIAN Y, MA F, et al.. Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators[J]. Applied Physics Letters, 2013, 102:111908. doi: 10.1063/1.4798244
[12] LEE S H, CHOI M, KIM T T, et al.. Switching terahertz waves with gate-controlled active graphene metamaterials[J]. Nature Materials, 2012, 11:936-941. doi: 10.1038/nmat3433
[13] KAKENOV N, BALCI O, POLAT E O, et al.. Broadband terahertz modulators using self-gated graphene capacitors[J]. JOSA B, 2015, 32:1861-1866. doi: 10.1364/JOSAB.32.001861
[14] LIANG G, HU X, YU X, et al.. Integrated terahertz graphene modulator with 100% modulation depth[J]. ACS Photonics, 2015, 2:1559-1566. doi: 10.1021/acsphotonics.5b00317
[15] LAO J, TAO J, WANG Q J, et al.. Tunable graphene-based plasmonic waveguides:nanomodulators and nano attenuators[J]. Laser Photonics Rev., 2014, 8:569-574. doi: 10.1002/lpor.v8.4
[16] WEIS P, GARCIA-POMAR J L, HOH M, et al.. Spectrally wide-band terahertz wave modulator based on optically tuned graphene[J]. ACS Nano, 2012, 6:9118-9124. doi: 10.1021/nn303392s
[17] WEIS P, GARCIA-POMAR J L, RAHM M. Towards loss compensated and lasing terahertz metamaterials based on optically pumped graphene[J]. Optics Express, 2014, 22:8473-8489. doi: 10.1364/OE.22.008473
[18] LI Q, TIAN Z, ZHANG X, et al.. Dual control of active graphene silicon hybrid metamaterial devices[J]. Carbon, 2015, 90:146-153. doi: 10.1016/j.carbon.2015.04.015
[19] CHEN X Y, TIAN Z. Recent progress in terahertz dynamic modulation based on graphene[J]. Chinese Optics, 2017, 10:86-97.(in Chinese) doi: 10.3788/co.
[20] LUO S, WANG Y, TONG X, et al.. Graphene-based optical modulators[J]. Nanoscale Research Letters, 2015, 10:199. doi: 10.1186/s11671-015-0866-7
[21] REN L, ZHANG Q, YAO J, et al.. Terahertz and infrared spectroscopy of gated large-area graphene[J]. Nano Letters, 2012, 12:3711-3715. doi: 10.1021/nl301496r
[22] HANSON G W. Dyadic Greens functions and guided surface waves on graphene[J]. Journal of Applied Physics, 2006, 103:064302. https://arxiv.org/pdf/cond-mat/0701205v2.pdf
[23] WINNERL S, ORLITA M, PLOCHOCKA P, et al.. Carrier relaxation in epitaxial graphene photoexcited near the Dirac point[J]. Physical Review Letters, 2011, 107:237401. doi: 10.1103/PhysRevLett.107.237401
[24] FALKOVSKY L A. Optical properties of graphene[J]. Journal of Physics:Conference Series, 2008, 129:012004. doi: 10.1088/1742-6596/129/1/012004
[25] DAWLATY J M, SHIVARAMAN S, CHANDRASHEKHAR M, et al.. Measurement of ultrafast carrier dynamics in epitaxial graphene[J]. Applied Physics Letters, 2008, 92:042116. doi: 10.1063/1.2837539
[26] RYZHⅡ V, RYZHⅡ M, OTSUJI T. Negative dynamic conductivity of graphene with optical pumping[J]. Journal of Applied Physics, 2007, 101:083114. doi: 10.1063/1.2717566
[27] MAK K F, SFEIR M Y, WU Y, et al.. Measurement of the optical conductivity of graphene[J]. Physical Review Letters, 2008, 101:196405. doi: 10.1103/PhysRevLett.101.196405
[28] RANA F, GEORGE P A, STRAIT J H, et al.. Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene[J]. Physical Review B, 2009, 79:115447. doi: 10.1103/PhysRevB.79.115447
[29] LEWIS R A. A review of terahertz sources[J]. Appl. Phys. D, 2014, 47:374001. doi: 10.1088/0022-3727/47/37/374001
[30] FERRARO A, ZOGRAFOPOULOS D C, CAPUTO R, et al.. Broadand narrow-line terahertz filtering in frequency-selective surfaces patterned on thin low-loss polymer substrates[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23:1-8. https://www.researchgate.net/profile/Antonio_Ferraro
[31] KE S, WANG B, HUANG H, et al.. Plasmonic absorption enhancement in periodic cross-shaped graphene arrays[J]. Optics Express, 2015, 23:8888-8900. doi: 10.1364/OE.23.008888
[32] FERRARO A, ZOGRAFOPOULOS D C, CAPUTO R, et al.. Angle resolved and polarization-dependent investigation of cross-shaped frequency selective surface terahertz filters[J]. Applied Physics Letters, 2017, 11:0141107. doi: 10.1021/acs.jpcc.6b11321
[33] ANDRYIEUSKI A, LAVRINENKO A V. Graphene metamaterials based tunable terahertz absorber:effective surface conductivity approach[J]. Optics Express, 2013, 7:9144-9155. https://www.researchgate.net/profile/Andrei_Andryieuski/publication/236188522_Graphene_metamaterials_based_tunable_terahertz_absorber_Effective_surface_conductivity_approach/links/53cfdb630cf25dc05cfb2ee4.pdf
[34] HE X, ZHONG X, LIN F, et al.. Investigation of graphene assisted tunable terahertz metamaterials absorber[J]. Optical Materials Express, 2016, 6:331-342. doi: 10.1364/OME.6.000331