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Abstract: In order to achieve tunable multiple Fano resonance characteristics and design a refractive index
sensor with high sensitivity, a nanoring-heptamer metal-dielectric composite nanoantenna structure is pro-
posed, and the influencing factors and variation rules of its Fano resonance characteristics are studied by
using the Finite Element Method (FEM). Researches show that Fano resonance characteristics of the hybrid
nano-antenna is sensitive to the changes of the height, incident angle and internal gap. In addition, the elec-
tric intensity and the Purcell factor (PF) under the excitation of the electric dipole source can reach
134.74 V/m and 3214 respectively, which greatly enhances the electric intensity near the center of the
nanoantenna. The hybrid nanoantenna has high Sensitivity (S) (1400 nm/RIU) and Figure of Merit (FOM)
(17 RTIU ™), respectively, which can be used as two significant performance indices for evaluating the refract-
ive index sensor with high sensitivity. This paper provides a feasible way to realize the tunability of Fano res-
onance in the composite nanoantenna and a solid theoretical basis for practical applications such as surface-

enhanced Raman scattering, quantum emitters, and refractive index sensors.
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1 Introduction

With the rapid development of nanotechno-
logy, integrated optical devices show a continuous
evolution trend of micro-miniaturization, miniatur-
ization, and high efficiency, such as the discovery of
nano-plasma, which breaks the diffraction limit!'-
in traditional optics, realizing a leap from the
wavelength level to the sub-wavelength level of
light. Nano-plasma'*, a macroscopic system com-
posed of many charged particles, is the fourth state
of matter except solid state, liquid state, and gas
state. When incident light hits a metal surface, the
strong interaction of incident photons with metal
electrons will lead to energy transfer and generates
the evanescent waves, which are called Surface
Plasmon Polaritons (SPPs)*”. SPPs have been ex-
tensively studied by researchers for generating ex-
tremely strong local electric fields in the deep sub-
wavelength size range. In addition, different de-
grees of photon energy absorption will also lead to
different degrees of coupling at the junction of met-
al and dielectric®™. Among them, the Fano reson-
ance effect®''! is a typical asymmetric coupled scat-

tering resonance phenomenon, which exhibits

unique electrical and optical properties due to the
strong interaction between different plasmon modes,
making it a major research hotspot in the field of
nano-photonics. In spectrum, it is represented as an
asymmetric optical response spectrum, that is, the
destructive or constructive interference between the
scattering amplitude from the continuous state (re-
lated to the background field) and the scattering
amplitude from the discrete state (related to reson-
ance) leads to a sharp change in the scattering amp-
litude and phase at the resonance wavelength. The
Fano resonance effect can achieve several times or
even tens of times the electric field enhancement
characteristics in the near-field area, and has broad
application prospects in many aspects such as sur-

face enhanced Raman scattering!'>'?

, generation of
third harmonics!'¥, and biosensors!*..

The Fano resonance phenomenon can be traced
back to 1935. At that time, Beutler experimentally
observed that the absorption spectral lines exhibited
obvious asymmetry!'®. Subsequently, Ugo Fano pro-
posed the famous Beutler-Fano formula based on
the principle of state superposition of quantum
mechanics!'”, which still has important guiding sig-
nificance for explaining many fields such as nuclear,

atomic, molecular. The nanostructures can support
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the effective coupling between dipole bright mode
and high-order dark mode, and the Fano resonance
effect is generated by the destructive interference.
This unique optical property provides a new idea for
developing new photonic devices. In 2012, Ye et al.
found that the structure has obvious Fano resonance
phenomenon through the study of nano-plasma
clusters, which is due to the strong coupling effect
within the structure to achieve electric field en-
hancement in the near-field area, while still having
outstanding advantages in the far-field area, and it
was found for the first time that the Figure of Merit
(FOM) of SPPs can be significantly improved™®.
Since then, the Fano resonance effect achieved by
excitation of different plasma modes has provided
an important way to enhance near-field properties.
In 2022, Yang Qili et al. used the time-domain fi-
nite difference method to study the Fano resonances
in gold split ring disk dimers, and the results showed
that the dipole mode and quadrupole mode can be
effectively excited by changing the gap!. Yorul-
maz et al. found the existence of asymmetric linear
Fano phenomena in plasma groups and distin-
guished the radiative and non-radiative properties of
clusters by single-particle absorption spectroscopy
of photothermal imaging™. By studying the
graphene-based nano-array structure, Huang et al.
found that the plasma coupling between the upper
and lower layers of the graphene nanoribbon of the
structure can generate Fano resonance phenomenon,
and verified that the position of the resonant peak
can be effectively adjusted by optimizing the struc-
tural parameters®). Many studies have shown that
single Fano resonance tuning can be achieved by
changing the arrangement and structural parameters
of nanostructures, but its spectral line characterist-
ics greatly limit its application in the field of micro-
nano optical devices. Compared with the nanostruc-
tures that can achieve single Fano resonance, nano-
structures with multiple Fano resonances can not
only achieve more adjustable resonance modes in
multiple frequency bands, effectively reduce radi-

ation attenuation, increase local field strength, but

also play a crucial role in improving sensing per-
formance*.

Therefore, in this paper, a nanoring-heptamer
metal-dielectric composite nanostructure that can
realize multiple Fano resonance is proposed, the in-
fluence and change law of structure height, incid-
ence angle, external medium refractive index and
other parameters on the Fano resonance characterist-
ics of composite nanostructures are studied by finite
element method, the electric field and the charge
distribution characteristics of the composite nano-
structure Fano resonance mode are investigated,
which provides some theoretical guidance for the

design of high-sensitivity sensors.

2 Structural model and calculation
method

Figure 1 is a schematic diagram of the geo-
metry of a nanoring-heptamer metal-dielectric nano-
antenna. The structure consists of the outermost sil-
icon dielectric ring, the annular silver metal cylin-

der in the middle, and the innermost silicon dielec-

G

() (b)

(e)

Fig. 1 Schematic diagram of the nanoring- heptamer met-
al-dielectric composite structure. (a) Innermost lay-
er with silicon cylinder structure; (b) intermediate
layer with silver cylinder structure; (c) single silic-
on cylinder and six-silver cylinders combination;
(d) outermost layer with silicon dielectric ring struc-
ture; (e) 2D model and (f) 3D model of the compos-
ite structure
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tric cylinder. The diameter of the innermost silicon
cylinder (Figure 1(a)) is 2R=80 nm, the diameter of
the annular uniformly distributed silver cylinder
(Figure 1(b)) is 27=80 nm, and the distance between
the seven inner cylinders (Figure 1(c)) is G=1 nm.
In addition, the inner radius R;=122 nm and the out-
er radius R,=193 nm of the outermost silicon dielec-
tric ring (Figure 1(d)). Figure 1(e) and 1 (f) are two-
dimensional and three-dimensional models of the
composite structure, respectively, where the gap
between the cylinder and the ring is g=1 nm, and the
height of the seven cylinders and the ring is
H=h=15 nm.

In order to accurately analyze the optical fre-
quency response characteristics of the composite
structure, the Finite Element Method (FEM) is used
to elaborate and analyze the Fano resonance genera-
tion mechanism. The FEM method is widely used
because it can calculate nanoparticles of any shape
and size. Its basic principle is to divide the original
continuous area into finite discrete minimal ele-
ments. They are connected in a certain way to form
a combination, and the original complex structure
can be solved by measuring the combination.

The nanoring-heptamer metal-dielectric com-
posite structure is placed in air with refractive index
n=1. The propagation direction of the incident plane
wave is parallel to the z-axis, and the polarization
direction is parallel to the x-axis. The simulation
process is carried out in the finite element software
COMSOL Multiphysics 5.5. The refractive index
data of the metal silver and dielectric silicon cited in

this paper are taken from Palik's book™".

3 Calculation results and analysis

3.1 Basic model research

In order to explore the physical mechanism of
Fano resonance in the nanoring-heptamer metal-
dielectric composite nanoantenna, firstly, the Scat-
tering Cross Section (SCS) spectra of a single silic-
on cylinder (Figure 1(a)) and a six-silver cylinder

(Figure 1(b)) are studied respectively. The calcula-

tion results are shown in Figure 2 (color online).
The simulation results show that when there is only
silicon cylinder, the scattering efficiency is ex-
tremely small, and there is no Fano phenomenon.
When there are only annular six-silver columns, the
spectral line has a formant at a wavelength of
750 nm and a scattering cross section of 173 000 nm?.
Secondly, according to the structural schematic dia-
gram of the combination of single silicon cylinder
and six-silver column shown in Figure 1(c), the
scattering characteristics of the composite structure
are explored, and the calculation result is shown by
the blue curve of the solid triangle in Figure 2. At
this time, the scattering intensity is significantly
weakened, and a double peak phenomenon occurs at
the wavelength of 588 nm and 759 nm. Due to the
asymmetry of the spectral line, the trough is shown
at the wavelength of 600 nm, and the scattering
cross-sectional areas are 80600 nm?, 157000 nm?
and 6660 nm? respectively. In summary, the single
Fano resonance can be attributed to the coupling
between the silicon cylinder and the six-silver
columns, that is, the interaction between the silicon
column and the silver column. Finally, an outer sil-
icon ring is introduced to the outside of the compos-
ite nanostructure to form the nanoring-heptamer
composite nanostructure as shown in Figure 1(f).
The corresponding scattering spectral lines are
shown in the green curve with a solid diamond
shape in Figure 2. It is can be seen from the figure
that the scattering efficiency curve shows three
plasma formants. Therefore, the introduction of sil-
icon dielectric rings plays a decisive role in the ex-
citation of multi-band resonance. Based on the
above analysis, the coupling effect further occurs
between the six-silver columns and the silicon
ring, and it has a significant promotion effect on
the enhancement of the SCS. The correspond-
ing wavelengths of the formant are 522 nm, 625 nm
and 833 nm, and the corresponding SCSs are
39300 nm?, 194000 nm* and 243 000 nm?, respect-
ively.

In order to study the influence of the coupling
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| —= Single silicon cylinder
250000 Six silver cylinders
—4— Heptamers of silicon
200 000 F and silver
- —+— Composite
nanostructures
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Fig. 2 SCS curves of single silicon cylinder, six-silver cyl-
inders, silicon-silver cylinder and composite nano-

structures
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effect of Fano resonance characteristics of nanoring-
heptamer metal-dielectric composite nanoantenna,
the pattern distribution of the formant of the green
curve with a solid diamond shape in Fig. 2 is shown
in Fig. 3 (color online). Fig. 3(a)—3(c) shows the
electric field distribution at the formant, when the

wavelength is 522 nm, the strong electric field is

=522 nm

A=625 nm

mainly concentrated between the six-silver columns,
and its strong absorption effect on the energy of the
incident photons causes the energy of the incident
light wave to couple between the silver cylinders.
The corresponding charge distribution is shown in
Figure 3(d). When the wavelength is 625 nm, the
electric field strength is mainly distributed between
the six-silver column and the single silicon cylinder,
resulting in a significant weakening of the coupling
effect between the six-silver columns. However, the
field strength between the six-silver column and the
silicon cylinder is significantly enhanced, and the
corresponding charge distribution is shown in
Figure 3(e). When the wavelength is 833 nm, the
coupling effect between the six-silver column and
the single silicon cylinder weakens sharply, while
the field strength between the silicon ring and
the silver column is greatly enhanced due to the ex-
citation of electrons inside the silicon ring, and the
corresponding charge distribution is shown in
Figure 3(f).

A=833 nm

(] (e)

®

Fig. 3 Electric field (a)—(c) and charge distribution (d)—(f) at the formant of the spectral line
K3 GAIEIRIEELL Y 378 (a)~(c) FIHL A 234 1] (d)~(F)

3.2 Influence of structural parameters on scatter-
ing spectral lines

The tunability of multiple Fano resonances is a

necessary condition to enhance the sensing perform-
ance. In order to elucidate the influence of the struc-

tural size of the nanoring-heptamer composite
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nanoantenna on the Fano resonance characteristics,
the variation law of the spectrum at different heights
H, incidence angle 0, inner gap G and outer gap g
are studied, and the simulation results are shown in
Figure 4 (color online). It can be seen from Figure
4(a) that with the increase of the height of the nano-
structure, the coupling effect at wavelength 833 nm
is significantly enhanced, the scattering cross-sec-
tion increases sharply, the spectral line shows blue-
shift, and the scattering section at wavelength 625
nm shows redshift and then blueshift. However, the

intensity of the formant at wavelength 522 nm
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Fig. 4

gradually decreases to disappear. This trend indic-
ates that the formant multiplicity and intensity of
Fano resonance are very sensitive to structural
height changes, so the tunability of Fano resonance
can be achieved by changing the structure height.

In addition, metal-dielectric composite nanoan-
tennas can overcome the disadvantages of high
ohmic loss of metal nanoantennas and low near-
field enhancement of dielectric nanoantennas to
maximize antenna performance, which is attributed
to the different absorption of incident photon en-
ergy by composite structures. Therefore, the effects

Energy/eV
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Schematic diagram of the influence of structural parameters on scattering spectral line. (a) Influence of different height

on scattering intensity and position; (b) contribution of different incidence angles to the scattering cross section;

(c) influence of different gaps between seven cylinders on scattering intensity and position; (d) contribution of differ-

ent cylindrical and annular gaps to the scattering cross-section
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of different incidence angles 6 on the resonance pos-
ition and intensity of Fano resonance were studied.
Among them, the angle between the direction of in-
cident light and the x-axis (xz plane) is defined as 6,
and the spectral line is regulated by changing 6. As
can be seen from Figure 4(b), the resonance intens-
ity gradually decreases at the three formants, with
gradual disappearance at 522 nm and 625 nm, and
the most dramatic decrease at 833 nm, where the
scattering cross-section decreases from 243 000 nm?
to 47800 nm®. This trend suggests that an increase
in the incidence angle significantly reduces the
coupling effect between structures, resulting in a
rapid decrease in resonance intensity. In other
words, the change of incident light from parallel to
the x-axis to perpendicular to the x-axis results in a
weakening of the coupling between the silicon ring
and the six-silver column, between the six-silver
columns, and between the six-silver columns and
the single silicon cylinder. Therefore, the selection
of the appropriate angle of incidence plays an im-
portant role in the coordination of multiple Fano res-
onances.

Figures 4 (c) and 4(d) investigate the effects of
changes in the gap between seven cylinders and
between seven cylinders and the outer ring on the
resonance spectral lines. The results show that with
the increase of the inner gap, the formant shows
blueshift and weakens the intensity, which is due to
the increase of the inner gap, the number of elec-
trons moving to the poles in the seven cylinders is
reduced, and the electrons are becoming more diffi-
cult to excited. With the increase of the gap between
the cylinder and the ring, there are no obvious
changes in the peaks and the intensities of the three
formants, indicating that the performance of the
composite nanostructure is mainly affected by the
changes of the cylindrical gap (i.e., the inner gap),
and is not sensitive to the change of the gap between
the ring and the cylinder.

3.3 Performance analysis when used for surface-
enhanced Raman scattering

The detection of Raman signal has always been

a research hotspot. However, its signal is extremely
weak and cannot be directly detected. The Raman
signal can only be enhanced by increasing the coup-
ling effect between different plasma modes to
achieve the detection goal. In this paper, four points
A, B, C and D are selected on the positive half axis
of the x-axis, and their position coordinates are
x=0 nm, x=40.5 nm, x=81 nm and x=121.5 nm re-
spectively (as shown on the right side of Figure 5).
Keep the polarization of the incident light along
the x-axis and the propagation direction along
the z-axis unchanged. Analyze and determine
whether the target of enhancing Raman signal can
be achieved by calculating the corresponding nor-
malized electric field value. Figure 5 (color online)
shows the normalized electric field values of the
four points. When the wavelength is 632 nm, the
normalized electric field value (E/E;) of point B is
the largest, reaching 134.74 V/m. It is calculated
that its (E/E,)* can reach 10°, which is 1.5 times
that of traditional silver heptamer. The results show
that the further enhancement of the coupling
effect leads to an increase in the near-field potential,
which can significantly enhance the near-field
strength, so it can be widely used in applications
such as Surface Enhancement of Raman Scattering
(SERS).
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Fig. 5 Normalized electric field values at the selected
points 4, B, C and D, and the black dots in the top
right figure are the positions of the four points
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3.4 Performance analysis when used as a quantum
emitter
For dipole emitters, the performance of elec-
tric field enhancement is the best choice for design-
ing nanoantennas. However, in this case, not only
the change of field strength is important, but also the
Purcell factor (PF) plays a leading role. The for-

mula is®;

P

PF=— (D
Py
CU4|P0|2
= (2)
0 12ngyc?

where P is the radiation power of electric dipole
transmitter with resonator, and P, is the vacuum
power loss without resonator.

The size of Purcell coefficient is an important
index to evaluate the emission performance of elec-
tric dipoles in nanocomposite structures™!. Place the
electric dipole source on 4 (x=0nm), B (x=
40.5 nm), C (x=81 nm) and D (x=121.5 nm) on the
positive half of x-axis, as shown in the figure on the
right side of Figure 6 (color online). Figure 6 shows
the PF values of the four points when the incident
light is polarized along x-axis. It can be seen from
the figure that the Purcell coefficient of the electric
dipole source at 444 nm is about 3214, which is 178
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Fig. 6 Purcell factor of the ED emitter at four points 4, B,
C and D, and the black dots in the top right figure

are the positions of the four points
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times that of the traditional silicon ED emitter®”.

Therefore, the emission performance of the electric
dipole source in the composite nanostructure has
been significantly enhanced. Based on the above
analysis, it is shown that the composite nanoan-
tenna has important scientific and technological po-
tential in improving fluorescence signal and
quantum transmitter applications.
3.5 Performance analysis when used as a sensor
To investigate the performance of the nanor-
ing-heptamer composite nanoantenna as a sensor,
the influence of the refractive index of different
external media on the scattering characteristics of
the structure is studied in this paper. Keep the
incident light wave vector parallel to the z-axis
direction and the polarization parallel to the x-axis
direction unchanged. Figure 7 (color online) shows
the change of the scattering cross-section when
the refractive index of the external medium ch-
anges from #=1.0 to n=1.1. It can be seen from the
figure that under different refractive indices, the
composite structure has triple formants, and the
formants move to the direction of wavelength with
the increasing refractive index. This is because the
change of the refractive index of the external medi-
um increases the coupling degree between the metal
and the dielectric, and excites more electrons to
move to the ends of the cylinder and the ring. When
the refractive index is n=1.1, the scattering effi-

ciency at the formant wavelength of 842 nm is the
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Fig. 7 Influence of different air materials on scattering

cross section
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strongest, which is 249000 nm?® This indicates
that the nanostructure is extremely sensitive to
the change of the refractive index of the external
medium.

In addition, the Sensitivity (S) and FOM are
calculated, and the results are shown in Table 1 and
Table 2. The output change caused by changing the
variable cell size is called the sensitivity factor,

which can be determined by formula (3)®:
S =A1/An (3)

where 4/ represents the change in wavelength, An

represents the change of refractive index.

Tab. 1 Sensitivity (S) of nanostructures changes with

different materials

®1 FEMBTARGREE ST

First peak Second peak Third peak

(nm/RIU) (nm/RIV) (nm/RIU)
n=1.02 800 750 1400
n=1.04 0 350 700
n=1.06 550 400 700
n=1.08 250 450 0
n=1.10 300 400 700

Tab. 2 Figure of Merit (FOM) changes with different

materials
x2 NEMRTHRERRER FOM L
First peak Second peak Third peak
(RIU™ (RIU™ (RIU ™)
n=1.02 1.5 17 10.1
n=1.04 0 8.1 6.1
n=1.06 8.4 9 6.6
n=1.08 4.1 10.1 0
n=1.10 7 9.2 4.5

According to Formula (3), the sensitivity S is
obtained by the ratio of the change of wavelength to
the change of refractive index. Therefore, increas-
ing the change of wavelength can significantly im-
prove the sensitivity S.

FOM is obtained by formula (4)™:

FOM=S/FWHM 4

where S stands for the Sensitivity and FWHM
stands for the Full Width at Half Maximum.

According to Formula (4), the increase of S
leads to the improvement of the FOM. In addition,
the FWHM is reduced by changing the structure
parameters, so as to improve the FOM.

According to the tables 1 and 2, the maximum
S is 1400 nm/RIU, and the FOM is 17 RIU". It is
worth noting that the sensitivity value is more than
2.7 times that of the traditional Fano sensor®”. This
result shows that the composite nanoantenna has the
advantage of high sensitivity, which can provide a
theoretical basis for the research of ultra-sensitive

detectors.

4 Conclusion

In this paper, the influence of structural para-
meters of nanoring-heptamer metal-dielectric com-
posite nanoantenna on its multiple Fano resonance
characteristics and its changing rule are systematic-
ally studied using FEM method. The results show
that the changes of structural parameters such as
height, incidence angle and internal and external
gaps are very sensitive to the position and intensity
of Fano formant. When the height increases, the in-
cidence angle decreases or the internal gap de-
creases, the scattering cross section will be en-
hanced, and the formant will show blueshift. There-
fore, the tunability of Fano resonance can be
achieved by changing the structural parameters.
The normalized electric field strength of nanostruc-
tures and the Purcell coefficient excited by electric
dipole source are explored, which could reach
134.74 V/m and 3214, respectively. This signific-
antly improves the near-field enhancement charac-
teristics and can be widely used in fields such as
surface enhanced Raman scattering and quantum
emitters. By calculating the S and the FOM, the
maximum S is 1400 nm/RIU, and the FOM is
17 RIU". Compared with the traditional refractive



1

LV Jing-weli, et al. : Multiple Fano resonance properties of nanoring-heptamer ...... 223

index sensor, the nanoantenna can better improve

the sensing performance, and can therefore be used
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