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Abstract: As an early component of modern Super-Resolution (SR) imaging technology, Structured Illumin-
ation Microscopy (SIM) has been developed for nearly twenty years. With up to ~60 nm wavelengths and
564 Hz frame rates, it has recently achieved an optimal combination of spatiotemporal resolution in live cells.
Despite these advantages, SIM also suffers disadvantages, some of which originated from the intrinsic recon-
struction process. Here we review recent technical advances in SIM, including SR reconstruction, perform-

ance evaluation, and its integration with other technologies to provide a practical guide for biologists.
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1 Introduction

Due to its noninvasiveness and high specificity,
fluorescent microscopy is a powerful tool for invest-
igating the structure and function of biological
samplesl. Limited by the diffraction of light, the
resolution of conventional fluorescent microscopy is
~200 nm and ~500 nm in the lateral and vertical
axes™ and cannot resolve nanostructures beyond the
resolution limit. Many Super-Resolution (SR) tech-
niques have been proposed and developed to over-
come the resolution limit, and we elaborated on
three representative types below, including Stimu-
lated Depletion Microscope (STED), Single-Mo-
lecule Localization Microscopy (SMLM) and
Structured Illumination Microscope (SIM).

The STED breaks the diffraction limit by illu-
minating the excited fluorescent molecule with the
doughnut-shaped depletion light, which drives the
excited molecules away from the center into the
ground state®!. Because only the fluorescence sig-
nals emitted from the molecules at the doughnut's
center are kept and collected, the effective Point
Spread Function (PSF) size of a STED decreases as

the intensity of the depletion light increases, result-

EVFAG B SIM 55 HAM G E AR B HE AL, LUE R AR R SR B TG =
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ing in resolution improvement!.

Based on single-molecule localization accur-
acy, SMLM appeared in 2006 as fluorescent Photo-
activated Localization Microscopy (PALM)®! and
Stochastic Optical Reconstruction Microscopy
(STORM)™, which later become an important cat-
egory of SR microscopy. The fundamental
idea is that if one molecule was imaged, its position
could be estimated more precisely than the diffrac-
tion limit"”. Thus, if molecules within the structure
could be isolated and imaged one by one, interested
nanostructure could be resolved at a much higher
resolution once enough molecules are accumulated.

By illuminating the fluorescent sample with a
non-uniformly structured pattern, the SIM enables
SR imaging by shifting the high-frequency informa-
tion of the sample into the low-frequency domain of
the Optical Transfer Function (OTF) of the micro-
scope®. The reconstruction algorithm will extract
the high-frequency information and shift it to the
corresponding frequency domain; thus, SR-SIM im-
ages could be reconstructed from several low-resol-
ution raw images. This review mainly discusses the
SIM technique developments, which focused on im-
proving the imaging speed and reducing the photo-

toxicity for live-cell SR imaging.
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2 SIM image formation

Compared to wide-field illumination micro-
scopy, SIM uses non-uniformly distributed light
I (x) to excite the sample S (x). The fluorescence
light emitted from the sample is collected by the ob-
jective lens, where x represents the spatial coordin-
ate. Because of the diffraction, the fluorescence light
collection process can be treated as a low-pass filter

process and yields the image /., (x):
Lem (%) = ($(X)  Lex (X)) @ PSF e (x) )

Where "-" represents multiplication, ® represents
the convolution and PSF., (x) represents the point
spread function.

The Fourier transform of equation (1) yields:

(k) = (S0 @I () - OT Fon (k) (2)

(2
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= Grating
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where I, (k), S(k), Ix (k) and OTFL, (k) represent
the Fourier transform of I, (x), S(x), I, (x) and
PSF . (x), respectively. OT F., (k), the OTF or 'de-
tection passband' is an observable region (low-pass
filter) with the spatial cutoff frequency k., = 2NA/
Aem, in which high-frequency information of the
sample beyond this boundary is inaccessible to the
microscope. In SIM, high-frequency information is
mixed with the patterned illumination frequency,
thus being shifted into the detection passband via
the convolution of S (k) ® L, (k). Intuitively, the mul-
tiplication of a sample with structured illumination
means a sparser emission than that achieved with
wide-field illumination™.

Depending on the spatial distribution of the
illumination pattern I.,, SIM either performs a sinus-
oidal illumination pattern generated by interference
(Fig. 1(a)), or a spot-scanning illumination pattern

(Fig. 1(b)).

(b) Scannin g

mirror ‘/ o
_ Excitation beam

Tube lens

Dichroic

Objective Camera
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Fig. 1 Schematic diagram of structured illumination microscopy. (a) In sinusoidal illumination microscopy, interference

between multiple beams (usually generated by a diffraction grating or spatial light modulator) creates a 2D or 3D

striped pattern with spatial frequency ke illuminating on the sample. This pattern shifts the sample's spatial frequency

spectrum S (k) t0 § (k+kex) and § (k—kex), translating high-frequency SR information into the diffraction-limited detec-

tion passband OT F., (k) with the spatial cutoff frequency k.. After computational processing, the sample's highest de-

tectable frequency can be extended to kex + kem. (b) Spot-scanning illumination microscopy where fluorescence is collec-

ted by an array detector, and pixels offset by a distance from the excitation spot detect a shifted but higher-resolution,

low-signal confocal image. The reconstruction algorithm corrects the shift and restores the signal by reassigning the de-

tected fluorescence toward the illumination axis, with the final resolution PSFy, determined by the product of the excit-

ation PSF (PSFe) and the emission PSF (PSF.n). After deconvolution, this process improves resolution similar to that

obtained with sinusoidal illumination microscopy
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For sinusoidal illumination microscopy, mul-
tiple laser beams at the wavelength A, interfere to
generate the I, with a maximum spatial frequency
kex = 2NA /Ao Therefore, the high-frequency in-
formation of the sample S(k=+k.) shifts into the
OTF ., (k). With multiple orientation/phase illumin-
ation followed by the reconstruction, the high-fre-
quency information is unmixed and restored to its
proper location in Fourier space. For 2D sinusoidal
illumination microscopy with images taken at 3 ori-
entations x 3 phases, 2-fold isotropic lateral resolu-
tion enhancement can be achieved.

As for spot-scanning illumination microscopy,
the sample is illuminated by the diffraction-limited
focus PSF.,, which is I, = PSF.,. In addition, the
fluorescence emission at each scanned position is
filtered through a pinhole before being collected by
a multi-pixel detector. Thus, the obtained image I,
of a spot-scanned illumination microscopic image

can be described as:

Ion (1) = [ A(8) PSF e (s = 1" +1)-
PSFo (r=r)S@r)dr (3

where r represents the scan position, s represents
the imaging position on the camera, * represents the
sample position and A (s) represents the action of the
confocal aperture. Theoretically, after fluorescence
reassignment and deconvolution, the lateral resolu-
tion of 2D spot-scanning illumination microscopy
can be improved to the same extent as the sinusoid-

al illumination method.

3 SIM reconstruction

As for sinusoidal illumination microscopy, the
conventional SIM SR reconstruction algorithm con-
tains two procedures: parameter fitting and recon-
struction'”. The parameter fitting procedure needs
to estimate the precise values of the pattern wave
vector, the starting phase, and the modulation depth

of the illumination light. The cross-correlation of

different information components can estimate the
pattern wave vector in three steps: (1) standard
fast-Fourier-transform-based  cross-correlation in
frequency space to yield values only at discrete
frequency-space pixels; (2) parabolic interpolation
to subpixel accuracy to locate the maximum peak
of the cross-correlation; (3) refinement through an
optimization step in which subpixel frequency-
space shifts along the real-space phase gradients—
locating the cross-correlation peak yields the pat-
tern wave vector. After that, starting phase and
modulation depth must be estimated accurately,
which is crucial because incorrect estimation will
seriously decrease the reconstruction quality. A
Phase of Peaks (POP) method"" is proposed by
analyzing the POP of the delta function in the
spectral space of the spatial frequency of the cap-
tured image, which is commonly used in linear SIM
but less reliable for high-frequency or low modula-
tion depth illumination patterns. For a high-fre-
quency illumination pattern, Wicker et al. have pro-
posed two alternative methods based on iterative
cross-correlation and noniterative auto-correlation
reconstruction (ACR) algorithms, respectively!'?.
For a low modulation depth illumination pattern,
Zhou et al. have proposed a reconstruction al-
gorithm based on an Image Recombination Trans-
form (IRT) scheme to determine the initial phase ac-
curately!?. Finally, after combining the different in-
formation components in the frequency domain, a
generalized Wiener filter is usually used to recon-
struct the SR image.

As an ill-posed inverse problem, conventional
SIM reconstruction is prone to artifacts that may de-
crease the fidelity of SR image reconstruction and
perturb its quantitative relationship. Using the prior
knowledge of the sample, people have developed al-
gorithms to suppress reconstruction artifacts, such
as the Total Variance (TV)' and Hessian-SIM!"?],
TV-SIM is proposed for image reconstruction with a

low signal level. The reconstruction process is trans-
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formed into an optimization problem by treating
SIM as a multichannel imaging system and each
channel as an illumination pattern. Reconstruction
performance improves by appending a TV regulariz-
ation constraint to the optimization problem which
deviates from the conventional Wiener results be-
cause of the suppressed artifacts, which are valid-
ated on fixed samples (beads and actin) and live
samples (mitochondria). To avoid over-sharpening
the boundaries between different regions with the
TV regularization constraint, we propose the Hessi-
an-SIM. The Hessian regularization constraint is
proposed based on the continuity of biological struc-
tures in spatial and temporary dimensions as a pri-
ori knowledge to guide image reconstruction. It at-
tains artifact-minimized SR images with less than
10% of the photon dose used by conventional SIM,
while substantially outperforming other algorithms
at low signal intensities for the time. Hessian-SIM
enables rapid imaging of moving vesicles or loops
in the endoplasmic reticulum without motion arti-
facts and with a spatiotemporal resolution of 88 nm
and 188 Hz. Its high sensitivity allows sub-milli-
second excitation pulses followed by dark recovery
times to reduce photo-bleaching of fluorescent pro-
teins, enabling hour-long time-lapse SR imaging of
actin filaments in live cells. The authors also ob-
served the structural dynamics of mitochondrial
cristae and structures that were not observed then,
such as enlarged fusion pores during vesicle exocyt-
osis.

To further increase the effective resolution
of SIM for a given photon flux, we take advantage
of a priori knowledge about the sparsity and con-
tinuity of biological structures to develop a decon-
volution algorithm that increases the resolution
of SIM nearly to that of two-fold. Our method,
Sparse Structured [llumination Microscopy (Sparse-
SIM), achieves ~60-nm resolution at a frame rate
of up to 564 Hz, allowing it to resolve intricate

structures, including small vesicular fusion pores,

ring-shaped nuclear pores formed by nucleopor-
ins and relative movements of inner and outer
mitochondrial membranes in live cells. Besides
the prior knowledge regarding the sample, details of
the imaging system may also help. For example,
considering the prior knowledge of the sCMOS
camera in the SIM imaging system, we proposed
an sCMOS noise-corrected SIM reconstruction™®.,
We established the sCMOS noise model in SIM
imaging, and used it to derive an sCMOS noise-cor-
rected SIM reconstruction algorithm which sup-
presses the sSCMOS noise-related reconstruction ar-
tifacts and improves the Signal-to-Noise Ratio
(SNR).

Besides the regularization constraints based on
prior knowledge, PSF engineering is also intro-
duced into High-Fidelity SIM reconstruction (HiFi-
SIM) for reconstructing SR images with minimal ar-
tifacts and optimal optical sectioning!'”). However,
these methods depend on ad hoc tuneable paramet-
ers and may not resolve artifacts associated with dif-
ferent types of sources. To address the issue, Perez
et al. proposed a SIM reconstruction method based
on a two-step Richardson-Lucy (RL) deconvolution
for optimal results without any parameter tuning!'®!,
Smith et al. have proposed a noise-controlled SIM
with a physically realistic noise model that explains
the structured noise artifact!'?. Therefore, they intro-
duced the True-Wiener-filtered SIM, the flat-noise
SIM, and the notch filtering SIM, which suppresses
the structured artifacts while maintains resolving
power. The benefits of the proposed approaches are
demonstrated in focal adhesions and tubulin samples
in two and three dimensions and on nanofabricated
fluorescent test patterns. All these methods elimin-
ate ad hoc user-adjustable reconstruction paramet-
ers, thus improving objectivity. However, they also
show the trade-off between increasing contrast and
suppressing noise, which could be partly overcome
by introducing more notch filtering to decrease the
SNR.
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Unlike these model-driven reconstructions,
data-driven approaches, including Deep Neural Net-
work (DNN), provide a new direction for SIM re-
construction. A Generative Adversarial Network
(GAN) is used for transforming the Total Internal
Reflection Fluorescence (TIRF) microscopy images
of subcellular structures within cells and tissues to
match the results obtained with a TIRF-based struc-
tured illumination microscope™™. The deep network
rapidly infers SR images without any iterations or
parameter search, which may democratize SIM ima-
ging. Because GAN is a competitive process
between the generator (G) and discriminator (D),
two networks must be trained while their losses
must be balanced delicately. Therefore, while GAN
performs well in image-to-image translation, it is
generally challenging to train and requires more in-
put images and training epochs than conventional
Convolutional Neural Networks (CNNs). Alternat-
ively, people have proposed U-net to generate high-
quality SIM images with fewer inputs and lower in-
tensity due to short exposure?'l. The authors of that
research have validated its performance on different
cellular structures and achieved multicolor, live-cell
SIM imaging with significantly reduced photo-
bleaching. A very deep Residual Channel Attention
Networks (RCAN) is proposed to avoid hindering
the representational ability of CNNs when used in
SR tasks®*?, and 3D RCAN is developed by modify-
ing the RCAN for 3D applications in fluorescence
microscopy™!. 3D RCAN can improve spatial resol-
ution in SIM using expansion microscopy data as
ground truth with some researchers claiming to
achieve improvements of ~1.9-fold laterally and
~3.6-fold axially.

All existing GAN, U-net and 3D RCAN-based
reconstructions are implemented in the spatial do-
main. However, the difference in frequencies in the
Fourier domain rather than structural differences in
the spatial domain may enable deep networks to

learn the hierarchical representations of high-fre-

quency information more efficiently. Based on this
hypothesis, the Deep Fourier Channel Attention
Network (DFCAN) and its derivative trained with
Generative Adversarial Network (GAN) strategy,
termed DFGAN, are proposed and enable robust re-
construction of SIM images under the low SNR con-
ditions?. The authors of that research demon-
strated that DFCAN achieves comparable image
quality to SIM over a tenfold duration in multicolor
live-cell imaging experiments, which reveal struc-
tures of mitochondrial cristae and nucleoids and the
dynamics of interaction between organelles and
cytoskeletons.

As for spot-scanning illumination microscopy,
the expression PSF ., (s—r +r)PSF. (r—r') in Eq.
(3) is the product of the excitation point spread
function PSF., with the shifted emission point
spread function PSF., by an amount —s. If we neg-
lect the Stokes shift between the excitation and
emission wavelengths, PSF. = PSF.,. Thus the
center of gravity of the product PSF.,(s—7 +r)
PSF (r—7") is shifted by —s/2 from the optical ax-
is. Changing this center of gravity toward the optic-
al axis and integrating over s is the reconstruction of
spot-scanning illumination microscopy. Because
light recorded at pixel position s with the scan fo-
cus at position r is added to the final image at posi-
tion r+ s/2, the process is referred to as photon re-
assignment. The photon reassignment can be done
either by shrinking the camera image taken at one
scan position by a factor of two before adding
this shrunken image at center position r to the final
image, or by taking the camera image recorded at
scan position r as it is and then adding it at center
position 2r to the final image. After applying the
photon reassignment to the raw data, the resolution
of the reconstructed SR image can be enhanced fur-
ther by deconvolution algorithms such as Fourier re-
weighting®, The comparison of SIMSR reconstruc-
tion algorithm mentioned above could be found in
Table. 1.
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Tab.1 Comparison of SIM SR reconstruction algorithm
Principle Effect Code Reference
TV-SIM Append TV regularization to reconstruction Suppress reconstruction artifacts Not open-source Chu et al. 20141
Hessian-SIM Append Hessian regularization to reconstruction Suppress reconstrm‘:tlon art]fact‘s, avoid over- Open-source Huang eﬁ al.
sharpening boundaries 20181
HiFi-SIM Engineering the effective SIM PSF into an ideal ~ Suppress recons‘tructlop aljtlfaCtS, improve Open-source  Wen et al. 202117
form axial sectioning
Sparse-SIM Append Sparse and HeSSIaAn regularization to Increases SIM resolution ~2-fold laterally Open-source Zhao et”al‘
reconstruction 2021061
sCMOS Noise- Introduce sCMOS imaging noise model to Suppress sSCMOS noise-induced Not open source Zhou et al.
corrected SIM reconstruction reconstruction artifacts P 2022061
Two-step RL Introduce two-step RL deconvolution to climinate ad hoc tuncable parameters Not open source Perez et al.
deconvolution SIM reconstruction P P 2016
Noise-controlled  Introduce a physically realistic noise model to Suppress reconstruction artlfa'cts,‘ ellmmat? ad Smith et al.
. hoc tuneable parameters, maintain resolution ~ Open-source 1o
SIM reconstruction 20210
and contrast
Use GAN for transforming TIRF images into . Wang et al.
GAN TIRF-SIM TIRF SIM images Reconstruct rapidly Open-source 2019120
U-Net SIM Use U-net for producing SIM images Train efﬁmen'tly an.d reconstruct with fewer Open-source  Jin et al. 20202
low-intensity input images
. . . Increases SIM resolution ~1.9-fold laterally Chen et al.
3D RCAN Use 3D RCAN for increasing SIM resolution and ~3.6-fold axially Open-source 202124
DFCAN/DFGAN Use DFCAN/DFGAN for producing SIM Reconstruct with low SNR input images Open-source  Qiao ez al. 202124

images

4 SIM performance evaluation

4.1 Resolution evaluation

The resolution of an optical imaging system
represents the ability to distinguish two points of a
given distance in an attained image. The first and
foremost law of conventional optical imaging sci-
ence is that resolution is limited to a value on the
order of A//NA, with 4 equal to the wavelength of
light. Rayleigh and Sparrow captured this law
through empirical resolution criteria®. These criter-
ia were reiterated by Abbe and Nyquist, who
defined resolution as the inverse of the spatial band-
width of the imaging system. For the SIM imaging
system, the resolution depends not only on A and
NA, but also on the spatial frequency of the pattern.
We have recently developed sparse deconvolution
that further improves resolution®. Despite these ad-
vances, evaluating a system's resolution without bi-
as is crucial.

By evaluating the similarity between two inde-
pendent reconstructions of the same object in fre-
quency space to determine the threshold (the spatial
frequency) at which two reconstructions are consist-
ent with each other. Fourier Ring Correlation (FRC)

is a method commonly used to determine the ima-

ging system resolution®"

. The object is considered
to be resolved up to this spatial frequency. To com-
pute the FRC resolution, two statistically independ-
ent SR reconstructed SIM images I7® (¥) and L® (%)
are required, where ¥ denotes the spatial coordin-
ates. Subsequent statistical correlation of their Four-
ier transforms I} (l?) and I3} (12) over the pixels on
the perimeter of circles of constant spatial fre-
quency with magnitude &k = |l?| gives the FRC:

2, T(R* (F)

e .
kecircle

\/Z lffR@)r\/ >, |0

2 . Fé .
kecircle kecircle

FRC (k) =

4

n.on

where "x" denotes the conjugate operation. At low
spatial frequencies, the FRC curve is close to unity.
At high spatial frequencies, noise dominates over
signal; thus, the FRC decays to 0. The image resolu-
tion is the inverse of the spatial frequency for which
the FRC curve drops below a given threshold™
Different threshold criteria are proposed and evalu-
ated (0.5, 0.143, 20)*3%, and a fixed threshold of
1/7~0.143 is found to be practical for SIM!,
While FRC can only be used to evaluate the resolu-
tion of the 2D image, Fourier Shell Correlation

(FSC) must be used to evaluate resolution in 3D. By



1218 REYEE (FP3ES0)

15%

substituting the ring and 2D Fourier transform in
FRC with a spherical shell and a 3D Fourier trans-
form, FSC is turned into a generalization of the
FRC.

Two statistically independent SR images are
required to compute the FRC/FSC resolution of
SIM, which can be achieved by acquiring consecut-
ive images under the same conditions. However,
due to the bleaching or temporal fluctuations of the
fluorescence signals in live-cell experiments, the as-
sumption that FRC/FSC is stationarity may not be
valid®!. Furthermore, the empirical criteria for de-
termining the threshold in FRC/FSC confers a prob-
lem. A new method based on partial phase correla-
tion called decorrelation analysis is proposed for
resolution estimation. The decorrelation analysis
does not rely on user-defined parameters and only
requires an individual image. The main decorrela-
tion analysis algorithm is divided into two steps.
First, the cross-correlation between the Fourier
transform ISR (l?) of the SR reconstructed SIM im-
age and its normalized version I} (12) =R (/2) /
|fSR (l?)| is computed. By repeating operation where
the normalized Fourier transform is filtered addi-
tionally by a binary circular mask M, (I?) of radius r,

the decorrelation function d(r) is computed by:

S Re PR (1) (8) M)

d(r)=

|2

B (). (1)
(5

In general, the decorrelation function d(r) will
exhibit a local maximum of amplitude A, that indic-
ates the spatial frequency r, of best compromise of
rejecting noise and preserving signals. Reducing the
mask further removes signals than noise, thus de-
creasing the correlation below A, until it drops to
0 for = 0. Thus the position r, of the local maxim-
um is therefore related directly to the spatial fre-
quency distribution of the image. The input image is
subjected to a total of N, high-pass filterings (from

weak to robust filtering) to attenuate the energy of

low frequencies. For the i filtered image, a decor-
relation function d;(r) is computed once the peak
position 7; and amplitude A; are extracted, generat-
ing a set of [r;, A;] pairs. If the high-pass filtering re-
moves too much signal, the decorrelation function
will not exhibit a local maximum, and the peak posi-
tion and amplitude will be set to 0. Therefore, the
estimated resolution is computed by 2P/max
{ro,--+,7y,}, where P denotes the pixel size. Be-
cause the decorrelation analysis algorithm estimates
the highest frequency from the local maxima of the
decorrelation functions, it enables parameter-free
image resolution estimation based on an individual
SR reconstructed image.
4.2 Artifacts evaluation

Conventional SIM is prone to noise-specific ar-
tifacts that limit its applicability for lower signal-to-
noise data”. The simplest way to quantify artifacts
is to compare SR-SIM images with the correspond-
ing diffraction-limited counterparts directly. Ac-
cording to this idea, the SR Quantitative Image Rat-
ing and Reporting of Error Locations (SQUIRREL)
is presented as an analytical approach that allows
the quantitative mapping of local image artifacts®.

SQUIRREL is based on the premise that an SR
image should be a high-precision representation of
the underlying nanoscale positions and photon emis-
sion of the imaged fluorophores. The algorithm re-
quires three inputs: a reference image (generally dif-
fraction-limited), an SR SIM image, and a repres-
entative Resolution Scaling Function (RSF) image.
The RSF can be provided by the user or automatic-
ally estimated through optimization. Assuming an
imaged field of view has a spatially invariant Point-
Spread Function (PSF), applying RSF to the SR im-
ages should produce an image that is highly similar
to the original diffraction-limited version. The vari-
ance between these images beyond a noise floor can
be used as a quantitative indicator of local artifacts
in the SR representation.

The process of estimating an artifacts error
map via SQUIRREL is divided into 3 subsequent
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steps and described below. The following notation
will be used to denote the different images during
this process. Ip: diffraction-limited reference image;
RS F: resolution scaling function; Irsg: resolution
scaling function integrated over finite pixels; Is: ori-
ginal SR image; Is7: SR image registered to refer-
ence image; Isr,: registered SR image following lin-
ear intensity rescaling.

(1) Benchmarking the SR reconstruction against
the reference image

The first step of registration is the estimation of
the lateral mismatch Ax, Ay, through cross-correlat-
ing the reference and the SR images. The transla-
tion is needed to correct for aberrant shifts in the SR
image g arising from uncorrected sample drift and
differences between the optical path used to collect
the reference diffraction-limited image I, and SR
image Is, or from offsets introduced by the recon-
struction processes. For this purpose, the cross-cor-
relation is calculated through a Fast Hartley Trans-
form (FHT), taking advantage of the threaded Paral-
lel Colt library. Ax, Ay can then be estimated by cal-
culating the spatial difference between the coordin-
ates with the matrix correlation peak and its geomet-
ric center. The correlation matrix is also up-sampled
via a bi-cubic spline interpolation. Finally, bi-cubic
spline translation is employed in the SR image I for
maximizing its overlap with the reference image to
produce Isy. Thus, Iy = Is(x— Ax,y — Ay).

(2) Image intensity rescaling and the RSF es-
timation

This step is to rescale the intensity of the SR
estimate linearly image Is, and to convolve it with
Ixsk in @ manner that will maximize the similarity of
its intensity range to that of the reference image Ip.
The unknown variables @ and 8 that define the in-
tensity rescaling need to be estimated to generate
Isry. Thus Isr, = als + .

Additionally, the SQUIRREL algorithm can
automatically estimate the RSF by approximating to
a 2D Gaussian function of an unknown standard de-

viation o~ through a highly threaded implementation

of a Particle Swarm Optimizer (PSO). And the joint
optimization problem is defined as:

@,B,7) = argmin|| Iy — Is,(, ) ® Isr (o) |2

apo

(3) Calculating the error map, RSE, and RSP

The process of artifacts error mapping starts
with the calculation of the image Iy created by ap-
plying the RSF to the SR image. Thus, Izs =
ISTy@aE)®IRSF (@).

The global similarity between Is and the refer-
ence diffraction-limited image I, can be calculated
through a root-mean-square error, named RSE for
Resolution Scaled Error, and a Pearson correlation
coefficient, called RSP for Resolution Scaled Pear-

son coefficient, thus

_ 2
RSE = M , 6)
RSP = Z(ID _I_D)(IRS —Igs) o

N2 Uo=ToV \[Y es ~ TesY

where I, and Is represents the average value of I,
and Iy, respectively.
The artifacts error map M is the pixel-wise ab-

solute difference between I, and Irs, thus
M=|ID_IR5| . (8)

4.3 Modulation contrast evaluation

The intensity of the modulation contrast (or
stripes) in the sinusoidal illumination microscopy
raw image is a crucial determinant of SR reconstruc-
ted image quality, as it critically affects the amount
of frequency-shifted information that can be reas-
signed in the reconstruction process. To measure the
contrast of local stripes, each voxel in a raw 3D im-
age is calculated as follows™:

(1) A variance stabilizing Anscombe transform
(Anscombe et al. 1948) is performed so that noise
follows an approximate Gaussian distribution, rather
than Poissonian distribution.

(2) A z-window is selected where 2z+1 (z rep-

resents the number of z-planes above and below to
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be combined with each z-plane), and all raw phase
images within this window are stacked (the default
z-window of +1 z-sections increases the signal-to-
noise ratio to a similar extent to the "band filtering"
performed during reconstruction). These phase
series are Fourier-transformed using a  multith-
readed 1D discrete Fourier transformation along the
dimension of the different phases. The result of this
1D Fourier transformation allows the separating of
the raw data's different frequency components.

(3) The power of the frequency components
corresponding to the illumination pattern modula-
tion is divided by the standard deviation of the
highest frequency component for the same z-plane
(taken to be dominated by noise). The frequency
components of the first- and second-orders in the

Fourier transformed stack are located at plane num-

bers LyrO/N,+1, where Ly represents the length
of the above Fourier transformed data stack, N, rep-
resents the number of phase shifts during data ac-
quisition, and O represents the order number (1 or

2). The modulation-contrast-to-noise-ratio value is

calculated as MCNR = M, + Mp,/std(N). The

average modulation contrast for each channel can be
estimated using the Otsu algorithm to threshold the
histogram.

Furthermore, by multiplying the intensity of
each pixel by its MCNR value, the Modulation Con-
trast Map (MCM) can be computed. The MCM is an
RGB image where the mapped color of reconstruc-
ted features indicates the underlying modulation
contrast in the corresponding raw data. A summariz-
ation of the SIM performance evaluation algorithm

in this section could be found in Table. 2.

Tab.2 Summary of SIM performance evaluation algorithms

Function

Code Reference

FRC/FSC
Decorrelation analysis
NanoJ-SQUIRREL

SIMcheck

Determine SIM resolution by cross-correlation
Determine SIM resolution by partial phase correlation
Evaluate SIM artifacts with the resolution scaling function

Evaluate SIM stripe modulation contrast by computing the standard deviation =~ Open-source

Open-source  Nieuwenhuizen ef al. 20132%

Open-source Descloux et al. 201951

Open-source Culley et al. 20185

Ball et al. 20155

5 SIM integration with other techno-
logies

5.1 TIRF-SIM

For conventional SIM, the wide-field illumina-
tion excites fluorophores beyond the focal plane.
The significantly out-of-focus illumination causes
photo-bleaching/photo-toxicity, limiting the systems'
temporal resolution, imaging duration, and SNR. In
Total Internal Reflection Fluorescence (TIRF) mi-
croscopy, an evanescent field selectively excites
fluorophores adjacent to a coverslip (<100 nm),
which effectively eliminates out-of-focus fluores-
cencel!. Integrating TIRF with 2D SIM enables
sub-diffractive imaging with superb background re-
jection and low photo-toxicity.

As for 2D sinusoidal illumination microscopy,

a video rate TIRF-SIM imaging (Fig. 2(a), color on-
line) of tubulin and kinesin dynamics in living Dro-
sophila melanogaster S2 cells is demonstrated with
100-nm resolution at frame rates up to 11 HzP,
Equipped with an ultrahigh numerical aperture (N4,
1.7) objective, a TIRF-SIM achieves an 84-nm res-
olution at sub-second acquisition speeds in living
COS-7 cells. With multicolor capability, it is used to
visualize the individual Clathrin-Coated Pits (CCPs)
and their relationship to cortical F-actin near the
basal plasma membrane®”. By reducing the illumin-
ation angle in traditional TIRF-SIM for grazing in-
cidence excitation, GI-SIMP"! and its multicolor ver-
sion®™ mildly extend illumination depth down to
1 um, while presumably improving contrast com-
pared to regular 2D-SIM. However, the advantage
of GI-SIM compared to regular 2D-Sparse SIM is
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not apparent, given that the latter method can clearly
reveal organelles in deep cytosols, such as nuclear
pores in live nuclear membranes™”.

As for spot-scanning illumination microscopy,
multifocal SIM utilizes the Digital Micromirror
Device (DMD) to generate sparse multifocal illu-
mination patterns and physically rejects out-of-fo-
cus light. This enables subdiffraction imaging in live
samples eightfold thicker than in previous experi-

ments on whole cells at 1-Hz frame rates®™. An ana-

@
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log implementation of multifocal SIM, instant SIM,
utilizes optical instead of digital image-processing
operations to increase data acquisition rates, achiev-
ing 145 nm lateral and 350 nm axial resolutions at
acquisition speeds up to 100 Hz (Fig. 2(b), color on-
line)*”). The power of instant TIRF-SIM is demon-
strated in imaging fine, rapidly moving structure in-
cluding motor-driven organelles in human lung
fibroblasts and the cytoskeleton of flowing blood

cells within developing zebrafish embryos.
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Fig.2 The schematic diagram of TIRF-SIM (a) and instant SIM (b). Adapted from Kner et al.** and York et al.*"

5.2 Two-photon-SIM
Upon imaging thick samples, SIM is suspect to

increased scattered emission and background noise,

which decreases the spatial resolution and SNR.
With better penetration ability offered by the long

excitation wavelengths, two-photon (2P) excitation
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can help alleviate these issues. 2P excitation is of-
ten combined with spot-scanning illumination mi-
croscopy but not sinusoidal illumination micro-
scopy. This is because sinusoidal illumination mi-
croscopy is prone to local scatters within a sample.
Under such circumstances, globally determined
parameters are incorrect and will produce recon-
struction artifacts that cannot be resolved™!.

An early implementation of 2P-SIM uses a
multifocal excitation pattern (Fig. 3(a), color onli-
ne), which requires the post-processing of hundreds
of raw images to reconstruct each 2D SR image. It
gives resolution-doubled images with better section-
ing and contrast than 1P excitation in thick scatter-
ing samples such as Caenorhabditis elegans embry-

os, Drosophila melanogaster larval salivary glands,

@
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and mouse liver tissue?, With a single 2P excita-
tion focus in rescan confocal geometry (Fig. 3(b),
color online), 2P instant SIM (2P-ISIM) provides an
improved frame rate and even lower background

noise®,

2P-ISIM offers a spatial resolution of
~150 nm laterally and ~400 nm axially and a frame
rate of ~1 Hz at depths exceeding 100 um from the
coverslip surface in thick samples. The capabilities
of 2P-ISIM are demonstrated by imaging whole nem-
atode embryos, larvae, tissues, and organs inside
zebrafish embryos. Incorporating the resonant scan-
ner improves the frame rate of 2P-SIM to 30 Hz,
and enables imaging of actin cytoskeleton within
human mesenchymal stem cells, rat tail collagen I
hydrogels and nuclei deep within living Drosophila

melanogaster embryos (Fig. 3(c), color online)™*,
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Fig. 3 Schematic diagram of early implemented 2P SIM (a), 2P-ISIM (b), and 2P SIM with the resonant scanner (c). Adapted

from Ingaramo et al.*”, Peter et al."*' and Gregor et al."*!

While, the high peak intensities in 2P excita-
tion might cause more photo-toxicity and confound
the long-duration imaging ability of 2P-SIM ima-
ging, the spectral match between laser sources and
fluorescent probes might limit the multicolor ima-
ging of the system. Furthermore, the high costs of
2P laser sources may be another practical concern
worth considering with this technology™.

5.3 Nonlinear-SIM

Because the pattern formed by the interference

is also diffraction-limited, SIM can only increase
resolution by twofolds. However, if fluorescence
emission depends nonlinearly on the illumination,

Higher-Order Harmonics (HOH) are introduced in-
2NA
/lCX
(7> 1). The spatial resolution can be extended to

to the illumination pattern with

kexzn'

approximately A/2NA(n+ 1). Therefore, an infinite
number of HOH would theoretically lead to unlim-
ited resolution. An early implementation of non-lin-

ear SIM was proposed in 20021, With a peak excit-
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ation energy density of 37 mJ/cm? five detectable
HOH and <50 nm spatial resolution can be achieved
by saturated SIMM. Because saturation excitation
requires extremely high illumination intensities that
lead to accelerated photo-bleaching and photo-dam-
age even in fixed tissue, this implementation is a
theoretical demonstration of resolution increase.
Still, it cannot be used to study biological samples.
Interestingly, with structured STED enhanced
by surface plasmon resonance, a non-linear SIM
based on STED is considered suitable for live-cell
imaging®”. Simulation analysis predicts that SPR-
enhanced 2D STED is strong enough for non-linear

SIM to achieve high-speed imaging at a 30-nm res-

(@)
Ll L2 DOE L3 SLM
@ = "
ol
775 nm
pulse laser L4
|
635nmLD L5 L6 Ih
J
a, \

BFP 1!

olution and single-molecule sensitivity. Structured-
excitation STED-SIM (SSTED-SIM) is proposed to
increase non-linear efficiency and imaging depth,
which has structured excitation light and STED light
with the same grating vector in the sample plane.
The optical resolution, feasibility, and background
fluorescence reduction of SSTED-SIM are numeric-
ally simulated™. For three-dimensional (3D) SR
imaging over a volume, 3D STED-SIM (Fig. 4, col-
or online) is proposed”. Using structured illumina-
tion to generate a 3D depletion pattern, 3D STED-
SIM can achieve 60 nm lateral and 160 nm axial
resolution at a 5 Hz volume rate with reduced

photo-bleaching and photo damage.
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Fig. 4 (a) Schematic diagram of 3D STED-SIM. (b) The cross-section comparison of lateral PSF (top, left), axial PSF (bot-
tom, left), lateral OTF (top, right), and axial OTF (bottom, right) of the widefield microscopy (red) and 3D STED-SIM

(blue). Adapted from Xue et al.*”!

Reversible photo-switching of a fluorescent
protein provides the required nonlinearity at light in-
tensities six orders of magnitude lower than those
needed for saturation excitation. A non-linear SIM
based on the reversible photo-switching fluorescent
protein demonstrates approximately 40-nm resolu-
tion on purified microtubules labeled with the fluor-
escent photoswitchable protein Dronpa, and enables

mammalian nuclear pores and actin cytoskeleton to

be visualized®™. However, the switching scheme in
the study is highly inefficient because only a small
fraction of the fluorescence from photo-switched
molecules contributes to final reconstruction. To
compensate for the deficiency, a more efficient
switching scheme is proposed, including patterned
activation, excitation, and readout®™. A photos-
witchable protein (Skylan-NS) is used, which offers

enough switching cycles before photo-bleaching, a
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sufficient photon number per switching cycle, and a
high contrast ratio between the on and off states.
The PA NL-SIM can yield 62-nm lateral resolution
and a sub-second frame rate with 25 raw images and
a 20~100 W/cm? intensity. Further saturation of the
partial molecules in the activated state (saturated PA
NL-SIM) can achieve a near-isotropic lateral resolu-
tion of 45 nm with 35 raw images and a 490 W/cm?
intensity. These approaches are applied to image dy-
namics near the plasma membrane of spatially re-
solved assemblies of clathrin and caveolin, Rab5a in
early endosomes, and @-actinin with cortical actin.
Although non-linear SIM fills the gap between the
~100-nm resolution of linear SR-SIM and the ~20-
nm resolution of SMLM and STED, non-linear SIM
in live cells is still limited by imaging duration and
rate. Further development in photoswitchable dyes
may help to break these limitations. On the other
hand, using the computational SR algorithm we de-
veloped, Sparse-SIM achieves ~60-nm resolution

with only 9 raw images, has normal fluorophores,
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and has good live-cell compatibility””). Because the
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6 Summary

SIM has been widely used in life sciences for
its high specificity and non-invasive imaging ability.
In this review, we introduce the recent develop-
ments of SIM from multiple aspects, including the
SR reconstruction algorithm, performance evalu-
ation, and its integration with TIRF, two-photon and
non-linear technologies. With the developments in
optical design, better detectors, new dyes, and re-
construction algorithms, SIM will be more power-
ful for revealing structural and functional dynamics

in live cells.
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