留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光电系统中铍反射镜的发展与应用

石磊 许永森 刘福贺

石磊, 许永森, 刘福贺. 光电系统中铍反射镜的发展与应用[J]. 中国光学, 2014, 7(5): 749-758. doi: 10.3788/CO.20140705.0749
引用本文: 石磊, 许永森, 刘福贺. 光电系统中铍反射镜的发展与应用[J]. 中国光学, 2014, 7(5): 749-758. doi: 10.3788/CO.20140705.0749
SHI Lei, XUN Yong-sen, LIU Fu-he. Development and application of beryllium mirrors in optical systems[J]. Chinese Optics, 2014, 7(5): 749-758. doi: 10.3788/CO.20140705.0749
Citation: SHI Lei, XUN Yong-sen, LIU Fu-he. Development and application of beryllium mirrors in optical systems[J]. Chinese Optics, 2014, 7(5): 749-758. doi: 10.3788/CO.20140705.0749

光电系统中铍反射镜的发展与应用

doi: 10.3788/CO.20140705.0749
基金项目: 

武器装备预研基金资助项目(No.51460040104ZK1001);国家林业公益性资助项目(No.201204515)

详细信息
    作者简介:

    石磊(1984- ),男,河南新乡人,博士,助理研究员,2013年于吉林大学获得博士学位,主要从事航空成像与测量方面的研究。

    通讯作者:

    石磊,E-mail:leishi2013@foxmail.com

  • 中图分类号: V447.6

Development and application of beryllium mirrors in optical systems

  • 摘要: 综述了光电系统中铍反射镜常用材料的特性、加工方法、发展现状及最新应用。首先,介绍了目前国外铍反射镜常用材料的性能,铍反射镜基底制备、机械加工和光学加工等方面的发展现状。然后,以詹姆斯韦伯太空望远镜和F-9120航空远距离可见/红外双波段侦察相机为例,重点介绍了铍以及铍铝合金在空间和航空光电系统的反射镜及光机支撑结构上的最新应用。最后,对铍和铍铝合金在光电系统中的未来发展和应用前景提出了展望。
  • [1] 刘巨, 董得义, 辛宏伟, 等. 大口径反射镜组件的温度适应性[J]. 光学 精密工程, 2013, 21(12):3169-3174. LIU J, DONG D Y, XIN H W, et al. Tenperature adaptation of large aperture mirror assembly[J]. Opt. Precision Eng., 2013, 21(12):3169-3174.(in Chinese)
    [2] 康健, 宣斌, 谢京江. 表面改性碳化硅基底反射镜加工技术现状[J]. 中国光学, 2013, 6(6):824-833. KANG J, XUAN B, XIE J J. Manufacture technology status of surface modified silicon carbide mirrors[J]. Chinese Optics, 2013, 6(6):824-833.(in Chinese)
    [3] DUSTON C J, HULL T. Material trades between Be, SiC, and VQ aluminum for tactical systems:update referencing the current state-of-the-art[J]. SPIE, 2012, 8353:835328.
    [4] 高明辉, 刘磊, 任建岳. 空间相机反射镜碳化硅材料性能测试[J]. 光学 精密工程, 2007, 15(8):1170-1174. GAO M H, LIU L, REN J Y. Characteristic test of SiC for space camera's mirror[J]. Opt. Precision Eng., 2007, 15(8):1170-1174.(in Chinese)
    [5] BEMAND D. The james webb space telescope(JWST):hubble's scientific and technological successor[J]. SPIE, 2003, 4850:170-178.
    [6] PHILIP S H, RADACSI D, HEYDENBURG T, et al. Fabrication and testing of the ITTT beryllium secondary mirror[J]. SPIE, 1997, 3134:62-71.
    [7] DEVEREUX W P. Cryogenic infrared imaging beryllium telescope for Infrared Astronomical Statellite(IRAS)[J]. SPIE, 1983, 0414:214-218.
    [8] GALLAGHER D B, IRACE W R, WERNER M W. The development and mission of the Space Infrared Telescope Facility(SIRTF)[J]. SPIE, 2004, 5487:13-25.
    [9] JAMES L, BELL J, MILUTIN P. Design and analysis of a beryllium three-mirror anastigmat telescope for the Japanese advanced meteorological imager(JAMI)[J]. SPIE, 2004, 5658:91-102.
    [10] CAYREL M, PAQUIN R A, PARSONAGE T B, et al. Use of beryllium for the VLT secondary mirror[J]. SPIE, 1996, 2857:86-98.
    [11] CAYREL M. VLT beryllium secondary mirror no.1-performance review[J]. SPIE, 1998, 3352:721-729.
    [12] LORELL K R, AUBRUN J N, FEHER G J, et al. Design and operation of the infrared chopping secondary mirror for the Keck 10-m telescope[J]. SPIE, 1994, 2201:821-832.
    [13] DEVANEY N, BELLO D, FEMENIA B. Preliminary design and plans for the GTC adaptive optics system[J]. SPIE, 2004, 5490:913-923.
    [14] RUSSO M J, LOBIONDO S, COON B, et al. Beryllium optics and beryllium-aluminum structures for reconnaissance applications[J]. SPIE, 2007, 6666:66660T.
    [15] 郑亲波, 胥学荣. 风云一号气象卫星遥感仪器的光学设计[J]. 红外研究, 1990, 9(2):91-98. ZHENG Q B, XU X R. Optical design of VHRSR for FY-1 meteorological satellite[J]. Chin. J. Infrared Res., 1990, 9(2):91-98.(in Chinese)
    [16] 李大耀. 资源一号卫星的红外相机和CCD相机[J]. 中国航天, 1999, 20(4):27-36. LI D Y. Infrared and CCD camera of ZY-1 satellite[J]. Aerospace China, 1999, 20(4):27-36.(in Chinese)
    [17] 葉虎勇, 陈桂林. 地球同步轨道三轴稳定卫星的扫描镜设计及考虑[J]. 红外技术, 2003, 25(6):1-9. YE H Y, CHEN G L. A real-time image processing system based on TMS 320C6201[J]. Infrared Technology, 2003, 25(6):1-9.(in Chinese)
    [18] 宋立强, 杨世模, 陈志远. 空间太阳望远镜中的轻量化铍镜研究[J]. 光学 精密工程, 2009, 17(1):58-64. SONG L Q, YANG SH M, CHEN ZH Y. Study on lightweight beryllium mirror of space solar telescope[J]. Opt. Precision Eng., 2009, 17(1):58-64.(in Chinese)
    [19] PAQUIN R A. Hot isostatic pressed beryllium for large optics[J]. Optical Engineering, 1986, 25(9):1003-1008.
    [20] WELLS J A, LOMBARD C M, SLOAN G B, et al. Lessons learned in recent beryllium-mirror fabrication[J]. SPIE, 1991, 1485:1-12.
    [21] 张友寿, 秦有钧, 吴东周, 等. 铍的粉末冶金工艺及焊接研究进展[J]. 焊接学报, 2001, 22(5):93-96. ZHANG Y SH, QIN Y J, WU D ZH, et al. Power metallurgy process and weld method of beryllium[J]. , 2001, 22(5):93-96. (in Chinese)
    [22] 钟景明, 闵学仁, 聂大钧, 等. 冲击研磨铍粉及其材料特性[J]. 稀有金属材料与工程, 1999, 28(6):386-389. ZHONG J M, MIN X R, NIE D J, et al. Impact-attrited beryllium powder and its material properties[J]. Rare Metal Materials and Engineering, 1999, 28(6):386-389.(in Chinese)
    [23] GEYL R, CAYREL M. Low CTE glass, SiC & Beryllium for lightweight mirror substrates[J]. SPIE, 2005, 5965:59651F-1.
    [24] 孙本双. 粉末冶金技术进展[J]. 粉末冶金技术, 1994, 12(2):126-130. SUN B SH. Developments in beryllium P/M technology[J]. , 1994, 12(2):126-130.(in Chinese)
    [25] SAY C, DUICH J, HUSKAMP C, et al. Cost effective aluminum beryllium mirrors for critical optics applications[J]. SPIE, 2013, 8837:883706-1.
    [26] 钟景明, 苏东峰, 许辅清, 等. 光学系统用铍镜的制备[J]. 粉末冶金材料科学与工程, 1998, 3(4):297-300. ZHONG J M, SU D F, XUN F Q, et al. Fabrication of a beryllium mirror used in optical system[J]. Materials Science and Engineering of Powder Metallurgy, 1998, 3(4):297-300.(in Chinese)
    [27] WELLS J A, LOMBARD C M, SLOAN G B. Lessons learned in recent beryllium mirror fabrication[J]. SPIE, 1991, 1485:2-12.
    [28] PARSONAGE T. JWST beryllium telescope: material and substrate fabrication[J]. SPIE, 2004, 5494:39-48.
    [29] CLAMPIN M. The James Webb Space Telescope(JWST)[J]. Advances in Space Research, 2008(41):1983-1991.
    [30] FEINBERG L D, CLAMPIN M, KESKI-KUHA R, et al. James Webb Space Telescope optical telescope element mirror development history and results[J]. SPIE, 2012, 8442:84422B.
    [31] DANIEL J, HULL T, BARENTINE J B. JWST:Tinsley achievements on the Largest Beryllium Polishing Project[J] SPIE, 2012, 8450:845021.
    [32] EDINGER D J, NORDT A A. Selection of I-220H Beryllium for the NIRCam optical bench[J]. SPIE, 2005, 5868:58680X-1.
    [33] RUSSO M J, LOBIONDO S, COON B, et al. Beryllium optics and beryllium-aluminum structures for reconnaissance applications[J]. SPIE, 2007, 6666:66660T.
    [34] RUSSO M J. An all-beryllium-aluminum optical system for reconnaissance applications[J]. SPIE, 2009, 7425:74250H.
    [35] PARSONAGE T. New technologies for optical systems utilizing aluminum beryllium[J]. SPIE, 2008, 7018:70108M-1.
    [36] PARSONAGE T, BENOIT J. Advances in beryllium and AlBeMet? optical materials[J]. SPIE, 2002, 4771:222-229.
    [37] HEBER J E, PARSONAGE T. Characterization of AlBeMet 162 as an optical substrate material[J]. SPIE, 2003, 5179:56-62.

  • 加载中
计量
  • 文章访问数:  633
  • HTML全文浏览量:  143
  • PDF下载量:  899
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-15
  • 修回日期:  2014-07-15
  • 刊出日期:  2014-09-25

目录

    /

    返回文章
    返回