留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于量子点的荧光型太阳能聚光器

李红博 尹坤

李红博, 尹坤. 基于量子点的荧光型太阳能聚光器[J]. 中国光学, 2017, 10(5): 555-567. doi: 10.3788/CO.20171005.0555
引用本文: 李红博, 尹坤. 基于量子点的荧光型太阳能聚光器[J]. 中国光学, 2017, 10(5): 555-567. doi: 10.3788/CO.20171005.0555
LI Hong-bo, YIN Kun. Quantum dots based luminescent solar concentrator[J]. Chinese Optics, 2017, 10(5): 555-567. doi: 10.3788/CO.20171005.0555
Citation: LI Hong-bo, YIN Kun. Quantum dots based luminescent solar concentrator[J]. Chinese Optics, 2017, 10(5): 555-567. doi: 10.3788/CO.20171005.0555

基于量子点的荧光型太阳能聚光器

doi: 10.3788/CO.20171005.0555
基金项目: 

国家自然科学基金项目 21701015

北京理工大学新教师启动基金项目 2015TPJS003

详细信息
    作者简介:

    李红博(1982—),男,河南郑州人,教授、博士生导师,2004年于郑州大学获得学士学位,2010年于中国科学院理化技术研究所获得博士学位,主要从事半导体纳米晶及其在能源领域应用方面的研究

    通讯作者:

    李红博, E-mail:hongbo.li@bit.edu.cn

  • 中图分类号: TP394.1;TH691.9

Quantum dots based luminescent solar concentrator

Funds: 

National Natural Science Foundation of China 21701015

Beijing Institute of Technology Startup Fund Project 2015TPJS003

More Information
  • 摘要: 近年来,量子点在结构可控、光谱调节和光学稳定方面的研究进展,表明基于量子点的聚光器件表现出优于基于传统有机染料分子的光输出性能。量子点聚光器成为目前量子点研究领域的新方向。量子点在宏量制备和绿色制备方面的深入研究,使得量子点的制造成本逐步降低,基于量子点的聚光器具有光电转换效率和成本上的优势。本文综述了量子点聚光器的研究进展,主要包括荧光型聚光器的优点、聚光器对量子点光学性质的要求、器件制备的工艺和器件的性能表征方法。重点阐述了量子点的太阳光吸收能力、荧光量子产率和重吸收等关键因素对聚光器件性能的影响,同时介绍了该领域目前最新的研究方向,展望了廉价太阳能窗户在未来城镇建筑上的潜在应用。
  • 图  1  (a)由聚合物和嵌在其中的量子点组成的太阳能聚光器, 量子点在聚合物显示出良好的分散状态[61]; (b)由核壳量子点和聚合物构成的聚光器聚光器,在紫外灯照射下工作的照片,重点突出了荧光在边缘聚光的效果,其物理尺寸为60 mm×40 mm×4.5 mm[60]; (c)聚光器的二维示意图。太阳光从器件上方入射。部分光被量子点吸收,假定荧光是在其周围空间均匀发射的。其中一部分荧光可以通过全反射模式进入光导模式,照射到边缘的光伏电池上(路径1)。一部分荧光可以被自身吸收,再发射荧光进入下一轮传输(路径2)。还有一部分荧光直接进入逃逸区域,从聚光器表面损失(路径3)。图中没有考虑界面反射损失和未被量子点吸收的投射光损失

    Figure  1.  (a)Schematic representation of LSC device composed of a polymer matrix incorporation of quantum dots(QDs). The QDs are well dispersed and separated in polymer[61]. (b)Photograph of a core/shell QDs-polymer-based LSC (Dimensions:60 mm×40 mm×4.5 mm) illuminated by an ultraviolent lamp. Edge concentration effect is highlighted[60]. (c)Schematic 2D view of a LSC. AM 1.5 photon is incident from the top. The light is absorbed by QDs. Its luminescence is randomly distributed in space. Part of the emission is guided to the solar cell at the edge by total internal reflection(indicated as pathway 1). Part of the emission can be reabsorbed by QDs itself(indicated as pathway 2). The re-emitted photon will start a new round of prorogation. Part of the emission falls into the escape cone(dark color) and is lost form the surfaces of LSC(indicated as pathway 3). Surface reflection and transmission are not considered in this scheme

    图  2  模板法制备量子点聚光器的示意图和量子点质量含量为0.3%的聚光器在自然光下的照片[45]

    Figure  2.  Schematic representation of the casting procedure for fabrication of QD-LSC and a photograph of the LSC device comprising of 0.3%(mass ratio) QDs under ambient illumination[45]

    图  3  3种用于聚光器的量子点,通过结构调控实现了较大的Stokes位移

    Figure  3.  Three types of QDs applied in LSC with large Stokes shift controlling via structure engineering

    图  4  涂布工艺在基地上制备薄膜的原理和基于该方法制备的大面积聚光器,其尺寸为91.4 cm×30.5 cm[46]

    Figure  4.  Schematic representation of thin-film deposition using doctor blade method and a photograph of large-area LSC with dimension of 91.4 cm×30.5 cm[46]

    图  5  (a)基于硅量子点的柔性聚光器,其尺寸为4.5 cm×20 cm×0.26 cm。柔性聚光器在弯曲前水平状态和弯曲后拱形状态的光输出对比。照片显示的分别是在紫外灯下的聚光器,分别采用紫外光过滤的可见光相机和红外相机拍摄。两组状态下对比的直接视觉显示效果是弯曲不影响光导效果。(b)研究光输出和弯曲后曲率的定量关系。测量点和激发光的距离为20 cm。(c)测量水平(θ=0°)和弯曲(θ=180°)的器件对比示意图。(d)Monte-Carlo光传输模拟结果。对比在水平和弯曲条件下,聚光器在入射光自上方垂直入射条件下的聚光效果。模拟结果显示弯曲曲率对光导输出效率几乎没有影响

    Figure  5.  (a)Flexible QD-LSC device based on Si QDs. LSC dimensions is 4.5 cm×20 cm×0.26 cm. photographs were taken with ultraviolet-filtered visible camera(left) and an ultraviolet-filtered infrared camera. (b)Optical output as function of device curvature in terms of central angel(theta) for optical distance of 20 cm between the excitation spot and the slab edge from where the signal is collected. (c)Schematic representation of a flat(θ=0°) and curved(θ=180°) LSC. (d)Visualization of Monte-Carlo ray-tracing simulations of for a flat(top) and a curved LSC(bottom) device. The LSCs are uniformly illuminated from the top, perpendicular to the slab surface(indicated by gray arrows). Photons reaching the output device are shown by red arrows. The simulations confirm that the wave guiding properties are unaffected by the device curvature

  • [1] LEWIS N S. Research opportunities to advance solar energy utilization[J]. Science, 2016, 351(6271):10.1126/science.aad1920. doi: 10.1126/science.aad1920
    [2] National Renewable Energy Laboratory, Research cell record efficiency chart[EB/OL].[2017-04-05]. https://www.nrel.gov/pv/assets/images/efficiency-chart.png.
    [3] CHEMISANA D. Building integrated concentrating photovoltaics:a review[J]. Renew. Sust. Energ. Rev., 2011, 15(1):603-611. doi: 10.1016/j.rser.2010.07.017
    [4] BURKHARDT J J, HEATH G A, TURCHI C S. Life cycleassessment of a parabolic trough concentrating solar power plant and the impacts of key design alternatives[J]. Environmental Science & Technology, 2011, 45(6):2457-2464. doi: 10.1021/es400821x
    [5] WHITAKER M B, HEATH G A, BURKHARDT J J, et al. Life cycle assessment of a power tower concentrating solar plant and the impacts of key design alternatives[J]. Environmental Science & Technology, 2013, 47(11):5896-5903. doi: 10.1021/es400821x
    [6] WEBER W, LAMBE J. Luminescent greenhouse collector for solar radiation[J]. Applied Optics, 1976, 152299-2300. http://www.ncbi.nlm.nih.gov/pubmed/20165383
    [7] BATCHELDER J S, ZEWAIL A H, COLE T. Luminescent solar concentrators.1.theory of operation and techniques for performance evaluation[J]. Applied Optics, 1979, 18(18):3090-3110. doi: 10.1364/AO.18.003090
    [8] BATCHELDER J S, ZEWAIL A H, COLE T. Luminescent solar concentrators.2.experimental and theoretical-analysis of their possible efficiencies[J]. Applied Optics, 1981, 20(21):3733-3754. doi: 10.1364/AO.20.003733
    [9] YABLONOVITCH E. Thermodynamics of the fluorescent planar concentrator[J]. J. Opt. Soc. Am., 1980, 70(11):1362-1363. doi: 10.1364/JOSA.70.001362
    [10] HERMANN A M. Luminescent solar concentrators-a review[J]. Sol. Energy, 1982, 29(4):323-329. doi: 10.1016/0038-092X(82)90247-X
    [11] RIES H. Thermodynamic limitations of the concentration of electromagnetic-radiation[J]. J. Opt. Soc. Am., 1982, 72(3):380-385. doi: 10.1364/JOSA.72.000380
    [12] SANSREGRET J, DRAKE J M, THOMAS W R L, et al.. Light transport in planar luminescent solar concentrators-the role of dcm self-absorption[J]. Applied Optics, 1983, 22(4):573-577. doi: 10.1364/AO.22.000573
    [13] CURRIE M J, MAPEL J K, HEIDEL T D, et al.. High-efficiency organic solar concentrators for photovoltaics[J]. Science, 2008, 321(5886):226-228. doi: 10.1126/science.1158342
    [14] ZHAO Y, LUNT R R. Transparent luminescent solar concentrators for large-area solar windows enabled by massive stokes-shift nanocluster phosphors[J]. Advanced Energy Materials, 2013, 3(9):1143-1148. doi: 10.1002/aenm.v3.9
    [15] SARK W G J H M V, BARNHAM K W J, SLOOFF L H, et al. Luminescent solar concentrators-a review of recent results[J]. Opt. Express, 2008, 16(26):21773-21792. doi: 10.1364/OE.16.021773
    [16] KIM J Y, VOZNYY O, ZHITOMIRSKY D, et al.. 25th Anniversary article:colloidal quantum dot materials and devices:a quarter-century of advances[J]. Advanced Materials, 2013, 25(36):4986-5010. doi: 10.1002/adma.201301947
    [17] KNOWLES K E, HARTSTEIN K H, KILBURN T B, et al. Luminescent colloidal semiconductor nanocrystals containing copper:synthesis, photophysics, and applications[J]. Chemical Reviews, 2016, 116(18):10820-10851. doi: 10.1021/acs.chemrev.6b00048
    [18] NASILOWSKI M, MAHLER B, LHUILLIER E, et al. Two-dimensional colloidal nanocrystals[J]. Chemical Reviews, 2016, 116(18):10934-10982. doi: 10.1021/acs.chemrev.6b00164
    [19] PIETRYGA J M, PARK Y-S, LIM J, et al.. Spectroscopic and device aspects of nanocrystal quantum dots[J]. Chemical Reviews, 2016, 116(18):10513-10622. doi: 10.1021/acs.chemrev.6b00169
    [20] REISS P, CARRIÈRE M, LINCHENEAU C, et al.. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials[J]. Chemical Reviews, 2016, 116(18):10731-10819. doi: 10.1021/acs.chemrev.6b00116
    [21] TALAPIN D V, SHEVCHENKO E V. Introduction:nanoparticle chemistry[J]. Chemical Reviews, 2016, 116(18):10343-10345. doi: 10.1021/acs.chemrev.6b00566
    [22] JING L, KERSHAW S V, LI Y, et al.. Aqueous based semiconductor nanocrystals[J]. Chemical Reviews, 2016, 116(18):10623-10730. doi: 10.1021/acs.chemrev.6b00041
    [23] XU G, ZENG S, ZHANG B, et al. New generation cadmium-free quantum dots for biophotonics and nanomedicine[J]. Chemical Reviews, 2016, 116(19):12234-12327. doi: 10.1021/acs.chemrev.6b00290
    [24] LHUILLIER E, KEULEYAN S, LIU H, et al.. Mid-IR colloidal nanocrystals[J]. Chemistry of Materials, 2013, 25(8):1272-1282. doi: 10.1021/cm303801s
    [25] DAI X, ZHANG Z, JIN Y, et al.. Solution-processed, high-performance light-emitting diodes based on quantum dots[J]. Nature, 2014, 515(7525):96-99. doi: 10.1038/nature13829
    [26] DANG C, LEE J, BREEN C, et al.. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films[J]. Nat. Nano., 2012, 7(5):335-339. doi: 10.1038/nnano.2012.61
    [27] SHIRASAKI Y, SUPRAN G J, BAWENDI M G, et al.. Emergence of colloidal quantum-dot light-emitting technologies[J]. Nat. Photon., 2013, 7(1):13-23. http://www.nature.com/nphoton/journal/v7/n1/abs/nphoton.2012.328.html
    [28] SUN Q, WANG Y A, LI L S, et al.. Bright, multicoloured light-emitting diodes based on quantum dots[J]. Nat Photon., 2007, 1(12):717-722. doi: 10.1038/nphoton.2007.226
    [29] BAE W K, BROVELLI S, KLIMOV V I. Spectroscopic insights into the performance of quantum dot light-emitting diodes[J]. MRS Bulletin, 2013, 38(9):721-730. doi: 10.1557/mrs.2013.182
    [30] 周青超, 柏泽龙, 鲁路, 等.白光LED远程荧光粉技术研究进展与展望[J].中国光学, 2015, 8(3):313-328. http://www.chineseoptics.net.cn/CN/abstract/abstract9292.shtml

    ZHOU Q CH, BAI Z L, LU L, et al.. Remote phosphor technology for white LED applications:advances and prospects[J]. Chinese Optics, 2015, 8(3):313-328.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9292.shtml
    [31] 马航, 李邓化, 陈雯柏, 等.氧化锌作为电子传输层的量子点发光二极管[J].发光学报, 2017, 38(4):507-513. http://youxian.cnki.com.cn/yxdetail.aspx?filename=GZXB2017042802T&dbname=CAPJ2015

    MA H, LI D H, CHEN W B, et al.. Quantum dot light emitting diodes with ZnO electron transport layer[J]. Chinese J. Luminescence, 2017, 38(4):507-513.(in Chinese) http://youxian.cnki.com.cn/yxdetail.aspx?filename=GZXB2017042802T&dbname=CAPJ2015
    [32] MEDINTZ I L, UYEDA H T, GOLDMAN E R, et al.. Quantum dot bioconjugates for imaging, labelling and sensing[J]. Nat. Mater., 2005, 4(6):435-446. doi: 10.1038/nmat1390
    [33] CLIFFORD J P, KONSTANTATOS G, JOHNSTON K W, et al.. Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors[J]. Nat. Nano., 2009, 4(1):40-44. doi: 10.1038/nnano.2008.313
    [34] 胡先运, 孟铁宏, 张汝国, 等.基于InP@ZnS QDs/Dured纳米荧光探针的DNA检测[J].发光学报, 2017, 38(3):288-295. http://cdmd.cnki.com.cn/Article/CDMD-10286-1016215773.htm

    HU X Y, MENG T H, ZHANG R G, et al.. InP@ZnS QDs/dured fluorescent nanoprobe for the detection of DNA[J]. Chinese J. Luminescence, 2017, 38(3):288-295.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10286-1016215773.htm
    [35] SCHOLES G D, RUMBLES G. Excitons in nanoscale systems[J]. Nat. Mater., 2006, 5(9):683-696. doi: 10.1038/nmat1710
    [36] RUSSELL K J, LIU T-L, CUI S, et al.. Large spontaneous emission enhancement in plasmonic nanocavities[J]. Nat. Photon., 2012, 6(7):459-462. doi: 10.1038/nphoton.2012.112
    [37] NOZIK A J, BEARD MC, LUTHER J M, et al. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells[J]. Chemical Reviews, 2010, 110(11):6873-6890. doi: 10.1021/cr900289f
    [38] KAMAT P V. Semiconductor surface chemistry as holy grail in photocatalysis and photovoltaics[J]. Accounts of Chemical Research, 2017, 50(3):527-531. doi: 10.1021/acs.accounts.6b00528
    [39] LAN X, MASALA S, SARGENT E H. Charge-extraction strategies for colloidal quantum dot photovoltaics[J]. Nat. Mater., 2014, 13(3):233-240. doi: 10.1038/nmat3816
    [40] 李正顺, 岳圆圆, 张艳霞, 等.丁胺包裹的CdSe量子点敏化的TiO2纳米晶薄膜电子转移机制[J].中国光学, 2015, 8(3):428-438. http://www.chineseoptics.net.cn/CN/abstract/abstract9305.shtml

    LI ZH SH, YUE Y Y, ZHANG Y X, et al.. Electron transfer mechanism of butylamine-capped CdSe quantum dot sensitized nanocrystalline TiO2 films[J]. Chinese Optics, 2015, 8(3):428-438.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9305.shtml
    [41] BRONSTEIN N D, LI L, XU L, et al.. Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells[J]. ACS Nano, 2014, 8(1):44-53. doi: 10.1021/nn404418h
    [42] BRONSTEIN N D, YAO Y, XU L, et al.. Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration[J]. ACS Photonics, 2015, 2(11):1576-1583. doi: 10.1021/acsphotonics.5b00334
    [43] XU L, YAO Y, BRONSTEIN N D, et al.. Enhanced photon collection in luminescent solar concentrators with distributed Bragg reflectors[J]. ACS Photonics, 2016, 3(2):278-285. doi: 10.1021/acsphotonics.5b00630
    [44] KLIMOV V I, BAKER T A, LIM J, et al.. Quality factor of luminescent solar concentrators and practical concentration limits attainable with semiconductor quantum dots[J]. ACS Photonics, 2016, 3(6):1138-1148. doi: 10.1021/acsphotonics.6b00307
    [45] MEINARDI F, MCDANIEL H, CARULLI F, et al.. Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots[J]. Nature Nanotechnology, 2015, 10(10):878-885. doi: 10.1038/nnano.2015.178
    [46] LI H, WU K, LIM J, et al.. Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators[J]. Nature Energy, 2016, 116157. http://www.nature.com/articles/nenergy2016157
    [47] COROPCEANU I, BAWENDI M G. Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency[J]. Nano Lett., 2014, 14(7):4097-4101. doi: 10.1021/nl501627e
    [48] GUTIERREZ G D, COROPCEANU I, BAWENDI M G, et al.. A Low reabsorbing luminescent solar concentrator employing pi-conjugated polymers[J]. Advanced Materials, 2016, 28(3):497-501. doi: 10.1002/adma.v28.3
    [49] BRADSHAW L R, KNOWLES K E, MCDOWALL S, et al.. Nanocrystals for luminescent solar concentrators[J]. Nano Lett., 2015, 15(2):1315-1323. doi: 10.1021/nl504510t
    [50] ERICKSON C S, BRADSHAW L R, MCDOWALL S, et al.. Zero-reabsorption doped-nanocrystal luminescent solar concentrators[J]. ACS Nano, 2014, 8(4):3461-3467. doi: 10.1021/nn406360w
    [51] KNOWLES K E, KILBURN T B, ALZATE D G, et al.. Bright CuInS2/CdS nanocrystal phosphors for high-gain full-spectrum luminescent solar concentrators[J]. Chemical Communications, 2015, 51(44):9129-9132. doi: 10.1039/C5CC02007G
    [52] SUMNER R, EISELT S, KILBURN T B, et al.. Analysis of optical losses in high-efficiency CuInS2-based nanocrystal luminescent solar concentrators:balancing absorption versus scattering[J]. J. Physical Chemistry C, 2017, 121(6):3252-3260. doi: 10.1021/acs.jpcc.6b12379
    [53] ZHOU Y, BENETTI D, FAN Z, et al.. Near infrared, highly efficient luminescent solar concentrators[J]. Advanced Energy Materials, 2016, 6(11):1501913. doi: 10.1002/aenm.201501913
    [54] KAYSIR M D R, FLEMING S, ARGYROS A. Modeling of stimulated emission based luminescent solar concentrators[J]. Opt. Express, 2016, 24(26):A1546-A1559. doi: 10.1364/OE.24.0A1546
    [55] LI C, CHEN W, WU D, et al. Large Stokes shift and high efficiency luminescent solar concentrator incorporated with CuInS2/ZnS quantum dots[J]. Sci Rep-Uk, 2015, 517777. http://www.ncbi.nlm.nih.gov/pubmed/26642815
    [56] MEINARDI F, EHRENBERG S, DHAMO L, et al.. Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots[J]. Nat. Photon., 2017, 11(3):177-185. doi: 10.1038/nphoton.2017.5
    [57] CONNELL R, FERRY V E. Integrating photonics with luminescent solar concentrators:optical transport in the presence of photonic mirrors[J]. J. Physical Chemistry C, 2016, 120(37):20991-20997. doi: 10.1021/acs.jpcc.6b03304
    [58] WALDRON D L, PRESKE A, ZAWODNY J M, et al.. PbSe quantum dot based luminescent solar concentrators[J]. Nanotechnology, 2017, 28(9):095205. doi: 10.1088/1361-6528/aa577f
    [59] DEBIJE M G, VERBUNT P P C. Thirty years of luminescent solar concentrator research:solar energy for the built environment[J]. Adv. Energ. Mater., 2012, 2(1):12-35. doi: 10.1002/aenm.201100554
    [60] BOMM J, BUECHTEMANN A, CHATTEN A J, et al.. Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators[J]. Sol. Energ. Mat. Sol. C, 2011, 95(8):2087-2094. doi: 10.1016/j.solmat.2011.02.027
    [61] MEINARDI F, COLOMBO A, VELIZHANIN K A, et al.. Large-area luminescent solar concentrators based on 'Stokes-shift-engineered' nanocrystals in a mass-polymerized PMMA matrix[J]. Nature Photonics, 2014, 8(5):392-399. doi: 10.1038/nphoton.2014.54
    [62] PURCELL-MILTON F, GUN'KO Y K. Quantum dots for luminescent solar concentrators[J]. J. Materials Chemistry, 2012, 22(33):16687-16697. doi: 10.1039/c2jm32366d
    [63] JEONG B G, PARK Y-S, CHANG J H, et al.. Colloidal spherical quantum wells with near-unity photoluminescence quantum yield and suppressed blinking[J]. ACS Nano, 2016, 10(10):9297-9305. doi: 10.1021/acsnano.6b03704
    [64] COROPCEANU I, ROSSINELLI A, CARAM J R, et al.. Slow-injection growth of seeded CdSe/CdS nanorods with unity fluorescence quantum yield and complete shell to core energy transfer[J]. ACS Nano, 2016, 10(3):3295-3301. doi: 10.1021/acsnano.5b06772
    [65] LI L, DAOU T J, TEXIER I, et al.. Highly luminescent CuInS2/ZnS core/shell nanocrystals:cadmium-free quantum dots for in vivo imaging[J]. Chemistry of Materials, 2009, 21(12):2422-2429. doi: 10.1021/cm900103b
    [66] ZANG H, LI H, MAKAROV N S, et al.. Thick-shell CuInS2/ZnS quantum dots with suppressed "blinking" and narrow single-particle emission line widths[J]. Nano Lett., 2017, 17(3):1787-1795. doi: 10.1021/acs.nanolett.6b05118
    [67] LEVCHUK I, WURTH C, KRAUSE F, et al.. Industrially scalable and cost-effective Mn2+ doped ZnxCd1-xS/ZnS nanocrystals with 70% photoluminescence quantum yield, as efficient down-shifting materials in photovoltaics[J]. Energy & Environmental Science, 2016, 9(3):1083-1094. http://pubs.rsc.org/en/content/articlepdf/2016/ee/c5ee03165f
    [68] WEI Q, ZHAO Y, DI Q, et al.. Good dispersion of large-Stokes-shift heterovalent-doped CdX quantum dots into bulk PMMA matrix and their optical properties characterization[J]. J. Physical Chemistry C, 2017, 121(11):6152-6159. doi: 10.1021/acs.jpcc.7b00207
    [69] 袁曦, 郑金桔, 李海波, 等.Mn掺杂ZnSe量子点变温发光性质研究[J].中国光学, 2015, 8(5):806-813. http://www.chineseoptics.net.cn/CN/abstract/abstract9349.shtml

    YUAN X, ZHENG J J, LI H B, et al.. Temperature-dependent photoluminescence properties of Mn-doped ZnSe quantum dots[J]. Chinese Optics, 2015, 8(5):806-813.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9349.shtml
    [70] KRUMER Z, PERA S J, VAN DIJK-MOES R J A, et al.. Tackling self-absorption in luminescent solar concentrators with type-Ⅱ colloidal quantum dots[J]. Sol. Energ. Mat. Sol. C, 2013:11157-65. http://www.opticsinfobase.org/abstract.cfm?uri=PV-2012-PW2B.3
    [71] ZHONG H, SCHOLES G D. Shape tuning of type Ⅱ CdTe-CdSe colloidal nanocrystal heterostructures through seeded growth[J]. J. American Chemical Society, 2009, 131(26):9170-9171. doi: 10.1021/ja903722d
    [72] YOON J, LI L, SEMICHAEVSKY A V, et al.. Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides[J]. Nature Communications, 2011:2343. http://europepmc.org/abstract/MED/21673664
    [73] CHOU C H, CHUANG J K, CHEN F C. High-performance flexible waveguiding photovoltaics[J]. Sci. Rep-Uk, 2013:32244. http://europepmc.org/abstract/med/23873225
  • 加载中
图(5)
计量
  • 文章访问数:  1810
  • HTML全文浏览量:  432
  • PDF下载量:  496
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-07
  • 修回日期:  2017-04-26
  • 刊出日期:  2017-10-01

目录

    /

    返回文章
    返回