留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Finite element analysis of infrared thermal imaging for four-layers structure of human thigh

LIU Hong-yan SUN Qiang

刘宏岩, 孙强. 人体腿部四层结构的红外热成像有限元分析[J]. 中国光学(中英文), 2018, 11(2): 237-247. doi: 10.3788/CO.20181102.0237
引用本文: 刘宏岩, 孙强. 人体腿部四层结构的红外热成像有限元分析[J]. 中国光学(中英文), 2018, 11(2): 237-247. doi: 10.3788/CO.20181102.0237
LIU Hong-yan, SUN Qiang. Finite element analysis of infrared thermal imaging for four-layers structure of human thigh[J]. Chinese Optics, 2018, 11(2): 237-247. doi: 10.3788/CO.20181102.0237
Citation: LIU Hong-yan, SUN Qiang. Finite element analysis of infrared thermal imaging for four-layers structure of human thigh[J]. Chinese Optics, 2018, 11(2): 237-247. doi: 10.3788/CO.20181102.0237

人体腿部四层结构的红外热成像有限元分析

详细信息
    作者简介:

    刘宏岩(1990-), 女, 吉林长春人, 硕士研究生, 2013年于北京航空航天大学获得学士学位, 主要从事红外光学、生物医疗与深度学习方面的研究。E-mail:270663566@qq.com

    孙强(1971—),男,黑龙江海伦人,研究员,2000年于长春理工大学获得硕士学位,2003年于南开大学获得博士学位,主要从事红外光学系统设计研究。E-mail: sunq@ciomp.ac.cn

  • 中图分类号: O59

Finite element analysis of infrared thermal imaging for four-layers structure of human thigh

doi: 10.3788/CO.20181102.0237
More Information
  • 摘要: 为研究人体红外热成像和体内肿瘤热源的关联,本文构建了包括骨层、肌肉层、脂肪层、皮肤层的人体腿部有限元模型。根据体内温度沿径向分布的特点,给出了各区域内动脉血液灌注热生成率随径向坐标变化的情况,解决了有限元建模中动脉血灌注热生成率随温度变化的非线性问题。进而用有限元方法数值计算了不同尺寸和不同深度的体内肿瘤所带来的温度变化。结果表明:在所研究的肿瘤尺寸范围内,肿瘤尺寸越小,体内温度提升越高,体表的峰值温度越高,体表温度分布半峰宽越窄,温度变化越陡峭。对于特定尺寸的肿瘤,肿瘤越深,体内峰值温度越高,体表的峰值温度越低,体表温度分布半峰宽越宽,温度变化越平缓。

     

  • Figure 1.  Distribution of heat generation rate of blood perfusion along radial direction of thigh model

    Figure 2.  Temperature distribution at cross-section of the cylinder model with Z equal to zero in the case without extra inner heat source given by finite element analysis. (a)Color nephogram of temperature distribution, and (b)temperature variation along radial direction

    Figure 3.  Simulation results of temperature distribution at cross-section of cylinder model with a tumor inside by finite element analysis. (a)Color nephogram of temperature distribution at plane of Z equal to zero, and (b)temperature variation along polar axis

    Figure 4.  Finite element analysis results of temperature varying along polar axis for tumors with different radii

    Figure 5.  Temperature distributions on the skin surface for tumors with different sizes inside the model. (a)Temperature distributions along circumference at plane of Z equal to zero, and (b)temperature distributions along Z direction

    Figure 6.  Finite element analysis results of temperature varying along polar axis for tumors with different depths

    Figure 7.  Temperature distributions on the skin surface for a tumor with different depths inside the model. (a)the temperature distributions along circumference at plane of Z equal to zero, and (b)the temperature distribution along Z direction

    Table  1.   Thicknesses and thermophysical parameters of tissues

    skin fat muscle bone blood
    Conductivity (W/m·℃) 0.47 0.21 0.51 0.75
    tissue density(kg/m3) 1 085 920 1 085 1 357 1 059
    specific heat(J/kg·℃) 3 680 2 300 3 800 1 700 3 850
    Thickness/cm 0.2 0.6 2.7 2.5
    metabolic heat generate/(W·m-3) 368 368 684 368
    blood perfusion rate(mL/s·m3) 180 180 540 0
    下载: 导出CSV

    Table  2.   Doubling time and metabolic heat generation rate of tumor with different radius

    r/cm 0.50 0.52 0.55 0.60 0.70
    τ/day 50 68 95 135 208
    Qm/(W·m-3) 65 400 47 822 34 544 24 144 15 746
    下载: 导出CSV

    Table  3.   Typical data of the temperature distributions in Fig. 5(a)

    r/cm Tmax/℃ Tmin/℃ T0.5/℃ FWHM/cm
    0.50 32.98 32.66 32.82 4.28
    0.52 32.92 32.66 32.79 4.29
    0.55 32.86 32.65 32.76 4.31
    0.6 32.82 32.65 32.74 4.32
    0.7 32.80 32.64 32.72 4.40
    下载: 导出CSV

    Table  4.   Typical data of the temperature distribution curves in Fig. 7(a)

    h/cm Tmax/℃ Tmin/℃ T0.5/℃ FWHM/cm
    1.4 33.02 32.66 32.84 4.05
    1.5 32.99 32.66 32.83 4.26
    1.6 32.96 32.67 32.82 4.47
    1.7 32.94 32.67 32.81 4.68
    1.8 32.91 32.67 32.79 4.89
    1.9 32.89 32.67 32.78 5.09
    2.0 32.88 32.67 32.78 5.31
    2.1 32.86 32.67 32.77 5.54
    2.2 32.85 32.67 32.76 5.76
    下载: 导出CSV
  • [1] BEZERRA L A, OLIVEIRA M M, ROLIM T L, et al.. Estimation of breast tumor thermal properties using infrared images[J]. Signal Processing, 2013, 93(10):2851-2863. doi: 10.1016/j.sigpro.2012.06.002
    [2] SILVA L F, SANTOS A A S M D, BRAVO R S, et al.. Hybrid analysis for indicating patients with breast cancer using temperature time series[J]. Computer Methods & Programs in Biomedicine, 2016, 130:142-153. https://www.sciencedirect.com/science/article/pii/S1359431114006504
    [3] SHI G L, HAN F, LIANG C W, et al.. A novel method of thermal tomography tumor diagnosis and its clinical practice[J]. Applied Thermal Engineering, 2014, 73(1):408-415. doi: 10.1016/j.applthermaleng.2014.07.074
    [4] ETEHADTAVAKOL M, NG E Y K. Breast thermography as a potential non-contact method in the early detection of cancer:a review[J]. Journal of Mechanics in Medicine & Biology, 2013, 13(2):309-107. https://www.researchgate.net/profile/Eddie_Ng2/publication/263800453_Breast_thermography_as_a_potential_non-contact_method_in_the_early_detection_of_cancer_A_review/links/55dd021a08ae591b309abe56.pdf?origin=publication_detail
    [5] XIAO J, HE Z Z, YANG Y, et al.. Investigation on three-dimensional temperature field of human knee considering anatomical structure[J]. International Journal of Heat & Mass Transfer, 2011, 54(9-10):1851-1860. https://www.researchgate.net/publication/229370371_Investigation_on_three-dimensional_temperature_field_of_human_knee_considering_anatomical_structure
    [6] GIUSEPPE C, DANILO E, SUKHOON O, et al.. An approach to rapid calculation of temperature change in tissue using spatial filters to approximate effects of thermal conduction[J]. IEEE Trans. Biomed Eng., 2013, 60(6):1735-1741. doi: 10.1109/TBME.2013.2241764
    [7] MICHEL A P M, SABBIR L, KEVIN B, et al.. In vivo measurement of mid-infrared light scattering from human skin[J]. Biomedical Optics Express, 2013, 4(4):520-530. doi: 10.1364/BOE.4.000520
    [8] BORCHARTT T B, CONCI A, LIMA R C F, et al.. Breast thermography from an image processing viewpoint:a survey[J]. Signal Processing, 2013, 93(10):2785-2803. doi: 10.1016/j.sigpro.2012.08.012
    [9] KENNEDY D A, LEE T, SEELY D. A comparative review of thermography as a breast cancer screening technique[J]. Integrative Cancer Therapies, 2009; 8(1):9-16. doi: 10.1177/1534735408326171
    [10] NG Y K. A review of thermography as promising non-invasive detection modality for breast tumor[J]. International Journal of Thermal Sciences, 2009, 48(5):849-859. doi: 10.1016/j.ijthermalsci.2008.06.015
    [11] PENNES H H. Analysis of tissue and arterial blood temperatures in the resting human forearm[J]. Journal of Applied Physiology, 1948, 1(2):93-122. doi: 10.1152/jappl.1948.1.2.93
    [12] BHOWMIK A, REPAKA R. Estimation of growth features and thermophysical properties of melanoma within 3-D human skin using genetic algorithm and simulated annealing[J]. International Journal of Heat & Mass Transfer, 2016, 98:81-95. https://www.researchgate.net/publication/299266384_Estimation_of_growth_features_and_thermophysical_properties_of_melanoma_within_3-D_human_skin_using_genetic_algorithm_and_simulated_annealing
    [13] DAS K, MISHRA S C. Estimation of tumor characteristics in a breast tissue with known skin surface temperature[J]. Journal of Thermal Biology, 2013, 38(6):311-317. doi: 10.1016/j.jtherbio.2013.04.001
    [14] FERREIRA M S, YANAGIHARA J I. A transient three-dimensional heat transfer model of the human body[J]. International Communications in Heat & Mass Transfer, 2009, 36(7):718-724. https://www.sciencedirect.com/science/article/pii/S0735193309000773
    [15] ADLAKHA K R P. Coaxial circular sector elements to study two-dimensional heat distribution problem in dermal regions of human limbs[J]. Mathematical & Computer Modelling, 1995, 22(9):127-140. https://www.sciencedirect.com/science/article/pii/089571779500173Y
    [16] AGRAWAL M, PARDASANI K R. Finite element model to study temperature distribution in skin and deep tissues of human limbs[J]. Journal of Thermal Biology, 2016, 62(SI):98-105. https://www.sciencedirect.com/science/article/pii/S0306456516300675
    [17] HATWAR R, HERMAN C. Inverse method for quantitative characterization of breast tumors from surface temperature data[J]. International Journal of Hyperthermia, 2017, 33(7):741-757. http://europepmc.org/abstract/MED/28540793
    [18] WANG C Y, SUN B, CHEN L, et al.. Thermal imaging research on relationship between the parameters of the inner abnormal heat source and surface temperature distribution[J]. Laser & Infrared, 2012, 42(1):31-35. https://www.researchgate.net/publication/6523009_A_Novel_Approach_of_Analyzing_the_Relation_between_the_Inner_Heat_Source_and_the_Surface_Temperature_Distribution_in_Thermal_Texture_Maps
    [19] YANG H Q, LIN Q Y, ZHEN Y E, et al.. Finite element analysis for temperature distribution of normal breast[J]. Acta Laser Biology Sinica, 2007, 16(4):424-427. https://www.researchgate.net/publication/241151840_Finite_Element_Analysis_for_Temperature_Distribution_of_Breast
    [20] KHANDAY M A. Numerical study of partial differential equations to estimate thermoregulation in human dermal regions for temperature dependent thermal conductivity[J]. Journal of the Egyptian Mathematical Society, 2014, 22(1):152-155. doi: 10.1016/j.joems.2013.05.006
    [21] MITRA S, BALAJI C. A neural network based estimation of tumor parameters from a breast thermogram[J]. International Journal of Heat & Mass Transfer, 2010, 53(21-22):4714-4727. https://www.sciencedirect.com/science/article/pii/S0017931010003340
    [22] NG E Y, SUDHARSAN N M. An improved three-dimensional direct numerical modelling and thermal analysis of a female breast with tumour[J]. Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine, 2001, 215(1):25-37. doi: 10.1243/0954411011533508
    [23] CHANMUGAM A, HATWAR R, HERMAN C. Thermal analysis of cancerous breast model[J]. International Mechanical Engineering Congress and Exposition, 2012, 2:134-143. https://jhu.pure.elsevier.com/en/publications/thermal-analysis-of-cancerous-breast-model-4
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  1239
  • HTML全文浏览量:  283
  • PDF下载量:  190
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-08
  • 修回日期:  2018-01-13
  • 刊出日期:  2018-04-01

目录

    /

    返回文章
    返回