Volume 13 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
ZHU Xiao-xiu, GE Yong, LI Jian-jun, ZHAO Yue-jin, ZOU Bing-suo, ZHONG Hai-zheng. Research progress of quantum dot enhanced silicon-based photodetectors[J]. Chinese Optics, 2020, 13(1): 62-74. doi: 10.3788/CO.20201301.0062
Citation: ZHU Xiao-xiu, GE Yong, LI Jian-jun, ZHAO Yue-jin, ZOU Bing-suo, ZHONG Hai-zheng. Research progress of quantum dot enhanced silicon-based photodetectors[J]. Chinese Optics, 2020, 13(1): 62-74. doi: 10.3788/CO.20201301.0062

Research progress of quantum dot enhanced silicon-based photodetectors

doi: 10.3788/CO.20201301.0062
Funds:

Supported by National Natural Science Foundation of China Excellent Youth Fund No. 61722502

National Science Foundation of China/Research Grant Council of Hong Kong Project No.51761165021

More Information
  • Corresponding author: ZHONG Hai-zheng E-mail:hzzhong@bit.edu.cn
  • Received Date: 13 Jun 2019
  • Rev Recd Date: 03 Jul 2019
  • Publish Date: 01 Feb 2020
  • Silicon-based photodetectors have been widely investigated due to their high reliability, easy integration and low cost. With the development of artificial intelligence and autonomous vehicles, research and performance enhancement of silicon-based photodetectors is an important field of research. Quantum dots are excellent light-conversion and light-modulation materials due to their superior absorption coefficient, tunable spectra, high photoluminescence quantum yield and simple integration. The tunable light absorption and phototuminesence properties of quantum dots make them suitable materials for enhancing the detection. Quantum dots enhanced silicon-based photodetectors are emerging as a new technique to advance the performance of detection and imaging. In particular, they show potential to expand the functionality of CCD and CMOS devices and further satisfy increasing demands for detection. In this review, we summarized the progress of quantum dot-enhanced silicon-based photodetectors in the field of ultraviolet detection, infrared imaging, polarization detection and spectral detection, hoping to attract the attentions of domestic colleagues.

     

  • loading
  • [1]
    王俊.超级像素CMOS图像传感器技术研究[D].上海: 中国科学院研究生院(上海技术物理研究所), 2014.

    WANG J. Research on superpixel CMOS image sensor technology[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics) 2014. (in Chinese)
    [2]
    MURAMATSU M, AKAHORI H, SHIBAYAMA K, et al.Greater-than-90% QE in visible spectrum perceptible from UV to near-IR Hamamatsu thinned back-illuminated CCDs[J]. Proceedings of SPIE, 1997, 3019: 2-8. doi: 10.1117/12.275165
    [3]
    ALIVISATOS A P. Semiconductor clusters, Nanocrystals, and quantum dots[J]. Science, 1996, 271(5251): 933-937. doi: 10.1126/science.271.5251.933
    [4]
    CARUGE J M, HALPERT J E, WOOD V, et al.Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers[J]. Nature Photonics, 2008, 2(4): 247-250. doi: 10.1038/nphoton.2008.34
    [5]
    TAN ZH K, MOGHADDAM R S, LAI M L, et al.Bright light-emitting diodes based on organometal halide perovskite[J]. Nature Nanotechnology, 2014, 9(9): 687-692. doi: 10.1038/nnano.2014.149
    [6]
    KONSTANTATOS G, HOWARD I, FISCHER A, et al.Ultrasensitive solution-cast quantum dot photodetectors[J]. Nature, 2006, 442(7099): 180-183. doi: 10.1038/nature04855
    [7]
    MEDINTZ I L, UYEDA H T, GOLDMAN E R, et al.Quantum dot bioconjugates for imaging, labelling and sensing[J]. Nature Materials, 2005, 4(6): 435-446. doi: 10.1038/nmat1390
    [8]
    SAHU S, BEHERA B, MAITI T K, et al.Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents[J]. Chemical Communications, 2012, 48(70): 8835-8837. doi: 10.1039/c2cc33796g
    [9]
    SHEN J H, ZHU Y H, YANG X L, et al.Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices[J]. Chemical Communications, 2012, 48(31): 3686-3699. doi: 10.1039/c2cc00110a
    [10]
    LI H T, HE X D, KANG ZH H, et al.Water-soluble fluorescent carbon quantum dots and photocatalyst design[J]. Angewandte Chemie International Edition, 2010, 49(26): 4430-4434. doi: 10.1002/anie.200906154
    [11]
    MURRAY C B, NORRIS D J, BAWENDI M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. Journal of the American Chemical Society, 1993, 115(19): 8706-8715. doi: 10.1021/ja00072a025
    [12]
    PENG Z A, PENG X G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor[J]. Journal of the American Chemical Society, 2001, 123(1): 183-184. doi: 10.1021/ja003633m
    [13]
    QU L H, PENG Z A, PENG X G. Alternative routes toward high quality CdSe nanocrystals[J]. Nano Letters, 2001, 1(6): 333-337. doi: 10.1021/nl0155532
    [14]
    YU W W, PENG X G. Formation of high-quality CdS and other Ⅱ-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers[J]. Angewandte Chemie International Edition, 2002, 41(13): 2368-2371. doi: 10.1002/1521-3773(20020703)41:13<2368::AID-ANIE2368>3.0.CO;2-G
    [15]
    YU W W, QU L H, GUO W ZH, et al.Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals[J]. Chemistry of Materials, 2003, 15(14): 2854-2860. doi: 10.1021/cm034081k
    [16]
    BATTAGLIA D, PENG X G. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent[J]. Nano Letters, 2002, 2(9): 1027-1030. doi: 10.1021/nl025687v
    [17]
    CROS-GAGNEUX A, DELPECH F, NAYRAL C, et al.Surface chemistry of InP quantum dots: a comprehensive study[J]. Journal of the American Chemical Society, 2010, 132(51): 18147-18157. doi: 10.1021/ja104673y
    [18]
    HARRIS D K, BAWENDI M G. Improved precursor chemistry for the synthesis of Ⅲ-Ⅴ quantum dots[J]. Journal of the American Chemical Society, 2012, 134(50): 20211-20213. doi: 10.1021/ja309863n
    [19]
    HINES M A, SCHOLES G D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution[J]. Advanced Materials, 2003, 15(21): 1844-1849. doi: 10.1002/adma.200305395
    [20]
    MCDONALD S A, KONSTANTATOS G, ZHANG SH G, et al.Solution-processed PbS quantum dot infrared photodetectors and photovoltaics[J]. Nature Materials, 2005, 4(2): 138-142. doi: 10.1038/nmat1299
    [21]
    MOREELS I, LAMBERT K, SMEETS D, et al.Size-dependent optical properties of colloidal PbS quantum dots[J]. ACS Nano, 2009, 3(10): 3023-3030. doi: 10.1021/nn900863a
    [22]
    PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al.Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano letters, 2015, 15(6): 3692-3696. doi: 10.1021/nl5048779
    [23]
    ZHANG F, ZHONG H ZH, CHEN CH, et al.Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology[J]. ACS Nano, 2015, 9(4): 4533-4542. doi: 10.1021/acsnano.5b01154
    [24]
    SONG J ZH, LI J H, LI X M, et al.Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)[J]. Advanced Materials, 2015, 27(44): 7162-7167. doi: 10.1002/adma.201502567
    [25]
    ZHOU Q CH, BAI Z L, LU W G, et al.In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights[J]. Advanced Materials, 2016, 28(41): 9163-9168. doi: 10.1002/adma.201602651
    [26]
    CHEN N J, BAI Z L, WANG Z M, et al.P-119: low cost perovskite quantum dots film based wide color gamut backlight unit for LCD TVs[J]. SID Symposium Digest of Technical Papers, 2018, 49(1): 1657-1659. doi: 10.1002/sdtp.12303
    [27]
    ZHANG M J, WANG L X, MENG L H, et al.Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection[J]. Advanced Optical Materials, 2018, 6(16): 1800077. doi: 10.1002/adom.201800077
    [28]
    TAN Q W, WU X G, ZHANG M J, et al.Performance analysis of PQDCF-coated silicon image sensor using Monte-Carlo ray-trace simulation[J]. Optics Express, 2019, 27(6): 9079-9087. doi: 10.1364/OE.27.009079
    [29]
    LU W G, WU X G, HUANG S, et al.Strong polarized photoluminescence from stretched perovskite-nanocrystal-embedded polymer composite films[J]. Advanced Optical Materials, 2017, 5(23): 1700594. doi: 10.1002/adom.201700594
    [30]
    WANG L, MENG L H, CHEN L, et al.Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in-situ fabricated perovskite quantum dots[J]. The Journal of Physical Chemistry Letters, 2019, 10(12): 3248-3253. doi: 10.1021/acs.jpclett.9b00658
    [31]
    CARBONE L, NOBILE C, DE GIORGI M, et al.Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach[J]. Nano Letters, 2007, 7(10): 2942-2950. doi: 10.1021/nl0717661
    [32]
    NIRMAL M, NORRIS D J, KUNO M, et al.Observation of the "dark exciton" in CdSe quantum dots[J]. Physical Review Letters, 1995, 75(20): 3728-3731. doi: 10.1103/PhysRevLett.75.3728
    [33]
    MENDE S B, HEETDERKS H, FREY H U, et al.Far ultraviolet imaging from the IMAGE spacecraft. 1. System design[J]. Space Science Reviews, 2000, 91(1-2): 243-270. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=01d4edca421803481713b5fa5c7682a5
    [34]
    周峰, 郑国宪, 闫锋, 等.天基紫外预警技术发展现状及思考[J].航天返回与遥感, 2012, 33(6): 39-44. http://d.old.wanfangdata.com.cn/Periodical/htfhyyg201206007

    ZHOU F, ZHENG G X, YAN F, et al.Development status and thoughts of space-based UV warning technology[J]. Spacecraft Recovery & Remote Sensing, 2012, 33(6): 39-44. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/htfhyyg201206007
    [35]
    ØSTERGAARD J. UV imaging in pharmaceutical analysis[J]. Journal of Pharmaceutical and Biomedical Analysis, 2018, 147: 140-148. doi: 10.1016/j.jpba.2017.07.055
    [36]
    NIKZAD S, HOENK M E, GREER F, et al.Delta-doped electron-multiplied CCD with absolute quantum efficiency over 50% in the near to far ultraviolet range for single photon counting applications[J]. Applied Optics, 2012, 51(3): 365-369. doi: 10.1364/AO.51.000365
    [37]
    HAMDEN E T, GREER F, HOENK M E, et al.Ultraviolet antireflection coatings for use in silicon detector design[J]. Applied Optics, 2011, 50(21): 4180-4188. doi: 10.1364/AO.50.004180
    [38]
    KARCHER A, BEBEK C J, KOLBE W F, et al.Measurement of lateral charge diffusion in thick, fully depleted, back-illuminated CCDs[C]. Proceedings of 2003 IEEE Nuclear Science Symposium, IEEE, 2003: 1513-1517.
    [39]
    KNOWLES A, WILLIAMS S, NINKOV Z, et al.Incorporating quantum dots in a magnesium fluoride matrix to enable deep-UV sensitivity for standard silicon based imaging detectors[J]. Proceedings of SPIE, 2019, 10982: 1098234. http://cn.bing.com/academic/profile?id=bc33ff969cdb1b9016104c66ddf6f734&encoded=0&v=paper_preview&mkt=zh-cn
    [40]
    SHENG X, YU C J, MALYARCHUK V, et al.Silicon-based visible-blind ultraviolet detection and imaging using down-shifting luminophores[J]. Advanced Optical Materials, 2014, 2(4): 314-319. doi: 10.1002/adom.201300475
    [41]
    MORRISSEY P F, MCCANDLISS S R, FELDMAN P D, et al.Ultraviolet performance of a lumigen-coated CCD[J]. Bulletin of the American Astronomical Society, 1991, 23: 1316. https://www.researchgate.net/publication/234265441_Ultraviolet_Performance_of_a_Lumigen-Coated_CCD
    [42]
    DESLANDES A, WEDDING A B, CLARKE S R, et al.Characterization of PVD lumogen films for wavelength conversion applications[J]. Proceedings of SPIE, 2005, 5649: 616-626. doi: 10.1117/12.582244
    [43]
    刘猛, 张大伟, 谢品, 等.增强光电图像传感器紫外探测薄膜的制备[J].仪表技术与传感器, 2009(9): 12-14. doi: 10.3969/j.issn.1002-1841.2009.09.005

    LIU M, ZHANG D W, XIE P, et al.Investigation in UV-enhanced coatings based on Zn2SiO4: Mn for image sensors[J]. Instrument Technique and Sensor, 2009(9): 12-14. (in Chinese) doi: 10.3969/j.issn.1002-1841.2009.09.005
    [44]
    FRANKS W A R, KⅡK M J, NATHAN A. UV-responsive CCD image sensors with enhanced inorganic phosphor coatings[J]. IEEE Transactions on Electron Devices, 2003, 50(2): 352-358. doi: 10.1109/TED.2003.809029
    [45]
    ROBINSON R, NINKOV Z, CORMIER D, et al.First report on quantum dot coated CMOS CID arrays for the UV and VUV[J]. Proceedings of SPIE, 2013, 8859: 88590K. http://cn.bing.com/academic/profile?id=df065f252d024c43fcffe75b34b887eb&encoded=0&v=paper_preview&mkt=zh-cn
    [46]
    JIANG L, SUN H J, XU B L, et al.The spectrum of quantum dots film for UV CCD[J]. Journal of Spectroscopy, 2013: 803907. http://cn.bing.com/academic/profile?id=1e7ad462dfa0c375a1df68bc87ec6a75&encoded=0&v=paper_preview&mkt=zh-cn
    [47]
    ROGALSKI A. Infrared detectors: an overview[J]. Infrared Physics & Technology, 2002, 43(3-5): 187-210. http://d.old.wanfangdata.com.cn/Periodical/hwyhmb200706003
    [48]
    ROGALSKI A. Recent progress in infrared detector technologies[J]. Infrared Physics & Technology, 2011, 54(3): 136-154. http://cn.bing.com/academic/profile?id=8b1cbabae30cb958a23c23df14e983b7&encoded=0&v=paper_preview&mkt=zh-cn
    [49]
    MANDELLI E, BEILEY Z M, KOLLI N, et al.Quantum dot-based image sensors for cutting-edge commercial multispectral cameras[J]. Proceedings of SPIE, 2016, 9933: 993304. http://cn.bing.com/academic/profile?id=45db81d2318e996a9b12847605162135&encoded=0&v=paper_preview&mkt=zh-cn
    [50]
    BEILEY Z M, CHEUNG R, HANELT E F, et al.Device design for global shutter operation in a 1.1-μm pixel image sensor and its application to near infrared sensing[J]. Proceedings of SPIE, 2017, 10098: 100981L. doi: 10.1117/12.2253219
    [51]
    BEILEY Z M, PATTANTYUS-ABRAHAM A, HANELT E, et al.Design and characterization of 1.1 micron pixel image sensor with high near infrared quantum efficiency[J]. Proceedings of SPIE, 2017, 10100: 101001B. http://cn.bing.com/academic/profile?id=c834a9ff49bf2a28052be83566520b04&encoded=0&v=paper_preview&mkt=zh-cn
    [52]
    KIM H Y, YOON D E, JANG J, et al.Quantum dot/siloxane composite film exceptionally stable against oxidation under heat and moisture[J]. Journal of the American Chemical Society, 2016, 138(50): 16478-16485. doi: 10.1021/jacs.6b10681
    [53]
    SUÁREZ I, GORDILLO H, ABARGUES R, et al.Photoluminescence waveguiding in CdSe and CdTe QDs-PMMA nanocomposite films[J]. Nanotechnology, 2011, 22(43): 435202. doi: 10.1088/0957-4484/22/43/435202
    [54]
    TYO J S, GOLDSTEIN D L, CHENAULT D B, et al.Review of passive imaging polarimetry for remote sensing applications[J]. Applied Optics, 2006, 45(22): 5453-5469. doi: 10.1364/AO.45.005453
    [55]
    VERMA V B, MARSILI F, HARRINGTON S, et al.A three-dimensional, polarization-insensitive superconducting nanowire avalanche photodetector[J]. Applied Physics Letters, 2012, 101(25): 251114. doi: 10.1063/1.4768788
    [56]
    CREMER F, DE JONG W, SCHUTTE K. Infrared polarization measurements and modelling applied to surface laid anti-personnel landmines[J]. Optical Engineering, 2002, 41(5): 1021-1032. doi: 10.1117/1.1467362
    [57]
    GE Y, ZHANG M J, WANG L, et al.Polarization-sensitive ultraviolet detection from oriented-CdSe@CdS-dot-in-rods-integrated silicon photodetector[J]. Advanced Optical Materials, 2019, 7(18): 1900330. doi: 10.1002/adom.201900330
    [58]
    CHAGANTI K, SALAKHUTDINOV I, AVRUTSKY I, et al.A simple miniature optical spectrometer with a planar waveguide grating coupler in combination with a plano-convex lens[J]. Optics Express, 2006, 14(9): 4064-4072. doi: 10.1364/OE.14.004064
    [59]
    JANSEN-VAN VUUREN R D, ARMIN A, PANDEY A K, et al.Organic photodiodes: the future of full color detection and image sensing[J]. Advanced Materials, 2016, 28(24): 4766-4802. doi: 10.1002/adma.201505405
    [60]
    WOLFFENBUTTEL R F. State-of-the-art in integrated optical microspectrometers[J]. IEEE Transactions on Instrumentation and Measurement, 2004, 53(1): 197-202. doi: 10.1109/TIM.2003.821490
    [61]
    MCGONIGLE A J S, WILKES T C, PERING T D, et al.Smartphone spectrometers[J]. Sensors, 2018, 18(1): 223. doi: 10.1109/JSEN.2017.2765745
    [62]
    BACON C P, MATTLEY Y, DEFRECE R. Miniature spectroscopic instrumentation: applications to biology and chemistry[J]. Review of Scientific Instruments, 2004, 75(1): 1-16. doi: 10.1063/1.1633025
    [63]
    CHIN C D, LINDER V, SIA S K. Lab-on-a-chip devices for global health: past studies and future opportunities[J]. Lab on a Chip, 2007, 7(1): 41-57. doi: 10.1039/B611455E
    [64]
    KONG S H, WIJNGAARDS D D L, WOLFFENBUTTEL R F. Infrared micro-spectrometer based on a diffraction grating[J]. Sensors and Actuators A: Physical, 2001, 92(1-3): 88-95. doi: 10.1016/S0924-4247(01)00544-1
    [65]
    GOLDMAN D S, WHITE P L, ANHEIER N C. Miniaturized spectrometer employing planar waveguides and grating couplers for chemical analysis[J]. Applied Optics, 1990, 29(31): 4583-4589. doi: 10.1364/AO.29.004583
    [66]
    BRYAN K M, JIA ZH, PERVEZ N K, et al.Inexpensive photonic crystal spectrometer for colorimetric sensing applications[J]. Optics Express, 2013, 21(4): 4411-4423. doi: 10.1364/OE.21.004411
    [67]
    WANG SH W, XIA CH SH, CHEN X SH, et al.Concept of a high-resolution miniature spectrometer using an integrated filter array[J]. Optics Letters, 2007, 32(6): 632-634. doi: 10.1364/OL.32.000632
    [68]
    DUEMPELMANN L, GALLINET B, NOVOTNY L. Multispectral imaging with tunable plasmonic filters[J]. ACS Photonics, 2017, 4(2): 236-241. doi: 10.1021/acsphotonics.6b01003
    [69]
    KUMAR K, DUAN H G, HEGDE R S, et al.Printing colour at the optical diffraction limit[J]. Nature Nanotechnology, 2012, 7(9): 557-561. doi: 10.1038/nnano.2012.128
    [70]
    BAO J, BAWENDI M G. A colloidal quantum dot spectrometer[J]. Nature, 2015, 523(7558): 67-70. doi: 10.1038/nature14576
    [71]
    KHAN S A, BOWDEN A K E. Colloidal quantum dots for cost-effective, miniaturized, and simple spectrometers[J]. Clinical Chemistry, 2016, 62(4): 548-550. doi: 10.1373/clinchem.2015.247999
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views(3280) PDF downloads(243) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return