Volume 13 Issue 2
Apr.  2020
Turn off MathJax
Article Contents
LIU Ming-xin, ZHANG Xin, WANG Ling-jie, SHI Guang-wei, WU Hong-bo, FU Qiang. Optimization of matching coded aperture with detector based on compressed sensing spectral imaging technology[J]. Chinese Optics, 2020, 13(2): 290-301. doi: 10.3788/CO.20201302.0290
Citation: LIU Ming-xin, ZHANG Xin, WANG Ling-jie, SHI Guang-wei, WU Hong-bo, FU Qiang. Optimization of matching coded aperture with detector based on compressed sensing spectral imaging technology[J]. Chinese Optics, 2020, 13(2): 290-301. doi: 10.3788/CO.20201302.0290

Optimization of matching coded aperture with detector based on compressed sensing spectral imaging technology

doi: 10.3788/CO.20201302.0290
Funds:

National Natural Science Foundation of China 61505201

Youth scientific research found of Jilin provice science and technology decelopment plan 20160520175JH

More Information
  • Corresponding author: ZHANG Xin, E-mail:optlab@ciomp.ac.cn
  • Received Date: 28 Apr 2019
  • Rev Recd Date: 22 May 2019
  • Publish Date: 01 Apr 2020
  • In practical applications, when the coding template of coded aperture spectral imagers does not match the resolution of their detector, the resolution of the system is lowered. For this problem, by using a mathematical model for the Coded Aperture Snapshot Spectral Imaging system (CASSI), its limiting factors such as a mismatch between its coding template and the detector's resolution are analyzed and the corresponding solutions are given. Considering that the resolution of the coding template is higher than the resolution of the detector, it is proposed that super-resolution technology is introduced to the CASSI system to achieve super-resolution spectral imaging through compressed sensing. For cases in which the resolution of the coding template is lower than the resolution of the detector, a grayscale coding aperture with threshold partitioning grading is proposed to achieve a high-resolution coding mode, which can ensure the resolution of the coded aperture spectral imager. The GPSR algorithm is used to reconstruct the data cube. Experimental results show that the spectral image measured by the CASSI system based on super-resolution theory is more accurate and richer in content. The CASSI system based on a coded aperture with grayscale grading is employed and shown to have higher spatial resolution and spectral resolution. It can be concluded that after optimization, the resolution and imaging quality of the CASSI system are greatly improved and its high resolution components are fully utilized.

     

  • loading
  • [1]
    PRIETO-BLANCO X, MONTERO-ORILLE C, COUCE B, et al.. Analytical design of an Offner imaging spectrometer[J]. Optics Express, 2006, 14(20):9156-9168. doi: 10.1364/OE.14.009156
    [2]
    SPERLING B A, HOANG J, KIMES W A, et al.. Time-resolved surface infrared spectroscopy during atomic layer deposition[J]. Applied Spectroscopy, 2013, 67(9):1003-1012. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0230601542/
    [3]
    MONTERO-ORILLE C, PRIETO-BLANCO X, GONZÁLEZ-NÚÑEZ H, et al.. Two-wavelength anastigmatic Dyson imaging spectrometers[J]. Optics Letters, 2010, 35(14):2379-2381. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0216231039/
    [4]
    YOSHIDA Y, OGUMA H, MORINO I, et al.. Mountaintop observation of CO2 absorption spectra using a short wavelength infrared Fourier transform spectrometer[J]. Applied Optics, 2010, 49(1):71-79. doi: 10.1364/AO.49.000071
    [5]
    梅风华, 李超, 张玉鑫.光谱成像技术在海域目标探测中的应用[J].中国光学, 2017, 10(6):708-718. doi: 10.3788/CO.20171006.0708

    MEI F H, LI CH, ZHANG Y X. Application of spectral imaging technology in maritime target detection[J]. Chinese Optics, 2017, 10(6):708-718. (in Chinese) doi: 10.3788/CO.20171006.0708
    [6]
    闫歌, 许廷发, 马旭, 等.动态测量的高光谱图像压缩感知[J].中国光学, 2018, 11(4):550-559. doi: 10.3788/CO.20181104.0550

    YAN G, XU T F, MA X, et al.. Hyperspectral image compression sensing based on dynamic measurement[J]. Chinese Optics, 2018, 11(4):550-559. (in Chinese) doi: 10.3788/CO.20181104.0550
    [7]
    谭翠媚, 许廷发, 马旭, 等.图-谱结合的压缩感知高光谱视频图像复原[J].中国光学, 2018, 11(6):949-957. doi: 10.3788/CO.20181106.0949

    TAN C M, XU T F, MA X, et al.. Graph-spectral hyperspectral video restoration based on compressive sensing[J]. Chinese Optics, 2018, 11(6):949-957. (in Chinese) doi: 10.3788/CO.20181106.0949
    [8]
    GEHM M E, JOHN R, BRADY D J, et al.. Single-shot compressive spectral imaging with a dual-disperser architecture[J]. Optics Express, 2007, 15(21):14013-14027. doi: 10.1364/OE.15.014013
    [9]
    WAGADARIKAR A, JOHANN, WILLETT R, et al.. Single disperser design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2008, 47(10):B44-B51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b320d1a28ce8a7fee1f8fb5e70535c4b
    [10]
    GOLUB M A, AVERBUCH A, NATHAN M, et al.. Compressed sensing snapshot spectral imaging by a regular digital camera with an added optical diffuser[J]. Applied Optics, 2016, 55(3):432-443. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=78120d399b57bea37cdc5cd06adff418
    [11]
    WAGADARIKAR A, JOHN R, WILLETT R, et al.. Single disperser design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2008, 47(10):B44-B51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b320d1a28ce8a7fee1f8fb5e70535c4b
    [12]
    WU Y H, CHEN C H, WANG ZH M, et al.. Fabrication and characterization of a compressive-sampling multispectral imaging system[J]. Optical Engineering, 2009, 48(12):123201. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=22180115ac6fa0a13a4591a842859bc7
    [13]
    NAYAR S K, BRANZOI V, BOULT T E. Programmable imaging using a digital micromirror array[C]. Proceedings of 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, 2004.
    [14]
    SCHUSTER N, FRANKS J. Challenges, constraints and results of lens design in 8-12micron waveband for bolometer-FPAs having a pixel pitch 12micron[J]. Proceedings of SPIE, 2013, 8704:870424. doi: 10.1117/12.2021637
    [15]
    CHANG H, YEUNG D Y, XIONG Y. Super-resolution through neighbor embedding[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2004: 275-282.
    [16]
    ARGUELLO H, CORREA C V, ARCE G R. Fast lapped block reconstructions in compressive spectral imaging[J]. Applied Optics, 2013, 52(10):D32-D45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ae4c59058b68c885b272e1718af22c4f
    [17]
    FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient projection for sparse reconstruction:application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4):586-597. doi: 10.1109/JSTSP.2007.910281
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article views(2345) PDF downloads(186) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return