[1] LU W, LIU L R, SUN J F, et al. Change in degree of coherence of partially coherent electromagnetic beams propagating through atmospheric turbulence[J]. Optics Communications, 2007, 271(1): 1-8. doi: 10.1016/j.optcom.2006.09.058
[2] 周鑫, 姜鹏, 孙剑峰, 等. 基于点目标大气闪烁的目标回波分布研究[J]. 红外与激光工程,2017,46(S1):74-81.

ZHOU X, JIANG P, SUN J F, et al. Investigation on the distribution of target echo based on point target atmospheric scintillation[J]. Infrared and Laser Engineering, 2017, 46(S1): 74-81. (in Chinese)
[3] COLLETT E, WOLF E. Beams generated by Gaussian quasi-homogeneous sources[J]. Optics Communications, 1980, 32(1): 27-31. doi: 10.1016/0030-4018(80)90307-7
[4] KOROTKOVA O, ANDREWS L C, PHILLIPS R L. Lidar model for a rough-surface target: method of partial coherence[J]. Proceedings of SPIE, 2004, 5237: 49-60. doi: 10.1117/12.515086
[5] GOODMAN J W. Statistical properties of laser speckle patterns[M]. DAINTY J C. Laser Speckle and Related Phenomena. Berlin, Heidelberg: Springer, 1975.
[6] KOROTKOVA O, CAI Y, WATSON E. Stochastic electromagnetic beams for LIDAR systems operating through turbulent atmosphere[J]. Applied Physics B, 2009, 94(4): 681-690. doi: 10.1007/s00340-009-3404-4
[7] RICKLIN J C, DAVIDSON F M. Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication[J]. Journal of the Optical Society of America A, 2002, 19(9): 1794-1802. doi: 10.1364/JOSAA.19.001794
[8] RICKLIN J C, DAVIDSON F M. Atmospheric optical communication with a Gaussian Schell beam[J]. Journal of the Optical Society of America A, 2003, 20(5): 856-866. doi: 10.1364/JOSAA.20.000856
[9] WU J, BOARDMAN A D. Coherence length of a Gaussian-Schell beam and atmospheric turbulence[J]. Journal of Modern Optics, 1991, 38(7): 1355-1363. doi: 10.1080/09500349114551521
[10] FRIBERG A T, SUDOL R J. Propagation parameters of Gaussian Schell-model beams[J]. Optics Communications, 1982, 41(6): 383-387. doi: 10.1016/0030-4018(82)90161-4
[11] LI M N, TAN L Y, MA J, et al. Performance analysis of a free-space laser communication system with a Gaussian Schell model[J]. Journal of Modern Optics, 2015, 62(19): 1608-1615. doi: 10.1080/09500340.2015.1054907
[12] 柯熙政, 王婉婷. 部分相干光在大气湍流中的光束扩展及角扩展[J]. 红外与激光工程,2015,44(9):2726-2733. doi: 10.3969/j.issn.1007-2276.2015.09.032

KE X ZH, WANG W T. Expansion and angular spread of partially coherent beam propagating in atmospheric turbulence[J]. Infrared and Laser Engineering, 2015, 44(9): 2726-2733. (in Chinese) doi: 10.3969/j.issn.1007-2276.2015.09.032
[13] WU ZH S, LI Y Q. Scattering of a partially coherent Gaussian-Schell beam from a diffuse target in slant atmospheric turbulence[J]. Journal of the Optical Society of America A, 2011, 28(7): 1531-1539. doi: 10.1364/JOSAA.28.001531
[14] 李成强, 张合勇, 王挺峰, 等. 高斯-谢尔模光束在大气湍流中传输的相干特性研究[J]. 物理学报,2013,62(22):224203. doi: 10.7498/aps.62.224203

LI CH Q, ZHANG H Y, WANG T F, et al. Investigation on coherence characteristics of Gauss-Schell model beam propagating in atmospheric turbulence[J]. Acta Physica Sinica, 2013, 62(22): 224203. (in Chinese) doi: 10.7498/aps.62.224203
[15] LI M N, TAN L Y, MA J, et al. Statistical distribution of the optical intensity obtained using a Gaussian Schell model for space-to-ground link laser communications[J]. Journal of Modern Optics, 2016, 63(10): 921-931. doi: 10.1080/09500340.2015.1111452
[16] 向宁静, 王明军, 王太荣. 部分相干高斯-谢尔光束在大气湍流中的平均强度与展宽[J]. 激光杂志,2012,33(5):4-6. doi: 10.3969/j.issn.0253-2743.2012.05.003

XIANG N J, WANG M J, WANG T R. Average intensity and spreading of a partially coherent Gaussian Schell-model beam propagation through atmospheric turbulence[J]. Laser Journal, 2012, 33(5): 4-6. (in Chinese) doi: 10.3969/j.issn.0253-2743.2012.05.003
[17] 埃米尔·沃尔夫. 光的相干与偏振理论导论[M]. 蒲继雄, 译. 北京: 北京大学出版社, 2014.

WOLF E. Introduction to the Theory of Coherence and Polarization of light[M]. PU J X, trans. Beijing: Beijing University Press, 2014. (in Chinese)