[1] 郭冠军, 邵芸. 地面对激光雷达信号散射的统计研究[J]. 物理学报,2001,51(2):228-234.

GUO G J, SHAO Y. Statistical properties of the back-scattered signals from ground in laser radar applications[J]. Acta Physica Sinica, 2001, 51(2): 228-234. (in Chinese)
[2] 李自勤, 王骐, 李琦, 等. 激光成像雷达系统中散斑像的乘法模型及其滤除[J]. 中国激光,2003,30(8):717-720.

LI Z Q, WANG Q, LI Q, et al. Multiplication model of speckle image and speckle suppression in imaging lidar[J]. Chinese Journal of Lasers, 2003, 30(8): 717-720. (in Chinese)
[3] 郭冠军, 邵芸. 激光散斑效应对激光雷达探测性能的影响[J]. 物理学报,2004,53(7):2089-2093.

GUO G J, SHAO Y. Rough surfaces induced speckle effects on detection performance of pulsed laser radar[J]. Acta Physica Sinica, 2004, 53(7): 2089-2093. (in Chinese)
[4] LAURENZIS M, LUTZ Y, CHRISTNACHER F, et al. Homogeneous and speckle-free laser illumination for range-gated imaging and active polarimetry[J]. Optical Engineering, 2012, 51(6): 061302. doi: 10.1117/1.OE.51.6.061302
[5] 王锐, 史瑞新. 基于多光束照明的回波光场散斑抑制机理[J]. 光学 精密工程,2017,25(9):2333-2338. doi: 10.3788/OPE.20172509.2333

WANG R, SHI R X. Suppression mechanics of returning wave speckle with multibeams illumination[J]. Optics and Precision Engineering, 2017, 25(9): 2333-2338. (in Chinese) doi: 10.3788/OPE.20172509.2333
[6] 任淑艳, 张琢, 刘国栋, 等. 精密测量中激光成像系统散斑的抑制因素[J]. 光学 精密工程,2007,15(3):331-336.

REN SH Y, ZHANG ZH, LIU G D, et al. Restraining speckle of laser imaging system in accurate measurement[J]. Optics and Precision Engineering, 2007, 15(3): 331-336. (in Chinese)
[7] 宋少华, 仝召民. 用于激光背光源电视的扫描分光与消散斑系统[J]. 光学 精密工程,2019,27(2):271-278. doi: 10.3788/OPE.20192702.0271

SONG SH H, TONG ZH M. Scanning beam splitting and speckle reduction system for laser backlight TV[J]. Optics and Precision Engineering, 2019, 27(2): 271-278. (in Chinese) doi: 10.3788/OPE.20192702.0271
[8] 王锐. 多束部分相干光抑制光强闪烁效应的仿真实验研究[J]. 发光学报,2014,35(7):835-839. doi: 10.3788/fgxb20143507.0835

WANG R. Simulation experiment of using multiple partially coherent beams to limit laser intensity scintillation effect[J]. Chinese Journal of Luminescence, 2014, 35(7): 835-839. (in Chinese) doi: 10.3788/fgxb20143507.0835
[9] FUJII H, ASAKURA T. Effect of surface roughness on the statistical distribution of image speckle intensity[J]. Optics Communications, 1974, 11(1): 35-38. doi: 10.1016/0030-4018(74)90327-7
[10] GEORGE N, JAIN A. Space and wavelength dependence of speckle intensity[J]. Applied Physics, 1974, 4(3): 201-212. doi: 10.1007/BF00884230
[11] GOODMAN J W. Dependence of image speckle contrast on surface roughness[J]. Optics Communications, 1975, 14(3): 324-327. doi: 10.1016/0030-4018(75)90328-4
[12] ERDMANN J C, GELLERT R I. Speckle field of curved, rotating surfaces of Gaussian roughness illuminated by a laser light spot[J]. Journal of the Optical Society of America, 1976, 66(11): 1194-1204. doi: 10.1364/JOSA.66.001194
[13] GEORGE N. Speckle from rough, moving objects[J]. Journal of the Optical Society of America, 1976, 66(11): 1182-1194. doi: 10.1364/JOSA.66.001182
[14] YOSHIMURA T. Statistical properties of dynamic speckles[J]. Journal of the Optical Society of America A, 1986, 3(7): 1032-1054. doi: 10.1364/JOSAA.3.001032
[15] 武颖丽, 吴振森. 旋转粗糙圆柱的激光散射功率谱分析[J]. 光学 精密工程,2012,20(12):2654-2660. doi: 10.3788/OPE.20122012.2654

WU Y L, WU ZH S. Analysis of power spectra for laser scattering intensity on rotating cylinder targets[J]. Optics and Precision Engineering, 2012, 20(12): 2654-2660. (in Chinese) doi: 10.3788/OPE.20122012.2654
[16] FUJI H, ASAKURA T, SHINDO Y. Measurement of surface roughness properties by means of laser speckle techniques[J]. Optics Communications, 1976, 16(1): 68-72. doi: 10.1016/0030-4018(76)90052-3
[17] 张耿. 粗糙目标激光散斑统计特性及微运动特征分析[D]. 西安: 西安电子科技大学, 2013.

ZHANG G. Statistical properties of laser speckle from rough objects and analysis on micro-motion characteristic[D]. Xi’an: Xidian University, 2013. (in Chinese)
[18] TCHVIALEVA L, MARKHVIDA I, ZENG H SH, et al. Surface roughness measurement by speckle contrast under the illumination of light with arbitrary spectral profile[J]. Optics and Lasers in Engineering, 2010, 48(7-8): 774-778. doi: 10.1016/j.optlaseng.2010.03.004
[19] LOUIE D C, TCHVIALEVA L, ZENG H SH, et al. Findings toward the miniaturization of a laser speckle contrast device for skin roughness measurements[J]. Proceedings of SPIE, 2017, 10037: 100370J.
[20] LEHMANN P. Surface-roughness measurement based on the intensity correlation function of scattered light under speckle-pattern illumination[J]. Applied Optics, 1999, 38(7): 1144-1152. doi: 10.1364/AO.38.001144
[21] NIPPOLAINEN E, SEMENOV D V, KAMSHILIN A A, et al. Fast distance sensing by use of the speckle effect[J]. Proceedings of SPIE, 2005, 5856: 691-697. doi: 10.1117/12.612576
[22] GAO ZH, ZHAO X Z. On-line surface roughness measurement based on specular intensity component of speckle patterns[C]. Proceedings of 2008 International Conference on Information and Automation, IEEE, 2008: 1050-1055.
[23] 赵博华, 王伯雄, 张金, 等. 粗糙金属表面光条中心提取方法[J]. 光学 精密工程,2011,19(9):2138-2145. doi: 10.3788/OPE.20111909.2138

ZHAO B H, WANG B X, ZHANG J, et al. Extraction of laser stripe center on rough metal surface[J]. Optics and Precision Engineering, 2011, 19(9): 2138-2145. (in Chinese) doi: 10.3788/OPE.20111909.2138
[24] ZHAO X Z, GAO ZH. Surface roughness measurement using spatial-average analysis of objective speckle pattern in specular direction[J]. Optics and Lasers in Engineering, 2009, 47(11): 1307-1316. doi: 10.1016/j.optlaseng.2009.04.012
[25] GAO ZH, ZHAO X Z. Roughness measurement of moving weak-scattering surface by dynamic speckle image[J]. Optics and Lasers in Engineering, 2012, 50(5): 668-677. doi: 10.1016/j.optlaseng.2011.11.014
[26] PRABHATHAN P, SONG CH L, HARIDAS A, et al. Intensity and contrast based surface roughness measurement approaches for rough and shiny surfaces[J]. Proceedings of SPIE, 2017, 10449: 1044912.
[27] PATZELT S, STÖBENER D, FISCHER A. Laser light source limited uncertainty of speckle-based roughness measurements[J]. Applied Optics, 2019, 58(23): 6436-6445. doi: 10.1364/AO.58.006436
[28] BERLASSO R G, QUINTIAN F P, REBOLLO M A, et al. Speckle size of light scattered from slightly rough cylindrical surfaces[J]. Applied Optics, 2002, 41(10): 2020-2027. doi: 10.1364/AO.41.002020
[29] DEV K, A. S. G P, ASWIN H, et al. Surface roughness measurement of additive manufactured samples using angular speckle correlation[J]. Proceedings of SPIE, 2017, 10449: 104492W.
[30] PRABHATHAN P, SONG CH L, HARIDAS A, et al. Experimental investigations and parametric studies of surface roughness measurements using spectrally correlated speckle images[J]. Proceedings of SPIE, 2017, 10449: 1044913.
[31] PATZELT S, STÖBENER D, STRÖBEL G, et al. Uncertainty of scattered light roughness measurements based on speckle correlation methods[J]. Proceedings of SPIE, 2017, 10329: 103291P.
[32] HARIDAS A, CRIVOI A, PRABHATHAN P, et al. Fractal speckle image analysis for surface characterization of aerospace structures[J]. Proceedings of SPIE, 2017, 10449: 104491T.
[33] XU D, YANG Q, DONG F, et al. Evaluation of surface roughness of a machined metal surface based on laser speckle pattern[J]. The Journal of Engineering, 2018, 2018(9): 773-778. doi: 10.1049/joe.2018.5057
[34] GEORGE N, LIVANOS A, ROTH J, et al. Remote sensing of large roughened spheres[J]. Optica Acta:International Journal of Optics, 1976, 23(5): 367-387. doi: 10.1080/713819273
[35] MARRON J C. Wavelength decorrelation of laser speckle from three-dimensional diffuse objects[J]. Optics Communications, 1992, 88(4-6): 305-308. doi: 10.1016/0030-4018(92)90046-T
[36] CRIMMINS T R, FIENUP J R, THELEN B J. Improved bounds on object support from autocorrelation support and application to phase retrieval[J]. Journal of the Optical Society of America A, 1990, 7(1): 3-13. doi: 10.1364/JOSAA.7.000003
[37] PAXMAN R G, MARRON J C. System and method for three-dimensional imaging of opaque objects using frequency diversity and an opacity constraint: US, 5627363[P]. 1997-05-06.
[38] SHIRLEY L G, ARIEL E D, HALLERMAN G R, et al. Advanced techniques for target discrimination using laser speckle[J]. The Lincoln Laboratory Journal, 1992, 5(3): 367-440.
[39] SHIRLEY L G, HALLERMAN G R. Applications of tunable lasers to laser radar and 3D imaging[R]. Lexington Massachusetts: MIT Lincoln Laboratory, 1996.
[40] SHIRLEY L G, HALLERMAN G R. Nonconventional 3D imaging using wavelength-dependent speckle[J]. The Lincoln Laboratory Journal, 1996, 9(2): 153-186.
[41] SHIRLEY L G, LO P A. Bispectral analysis of the wavelength dependence of speckle: remote sensing of object shape[J]. Journal of the Optical Society of America A, 1994, 11(3): 1025-1046. doi: 10.1364/JOSAA.11.001025
[42] FINI J M. Three dimensional image reconstruction from fourier magnitude measurements[D]. Cambridge, MA: Massachusetts Institute of Technology, 1997.
[43] SHIRLEY L G. Method and apparatus for remote sensing of objects utilizing radiation speckle: US, 8265375[P]. 2012-09-11.
[44] SHIRLEY L G. Method and apparatus for remote sensing of objects utilizing radiation speckle: US, 20170138722[P]. 2017-05-18.
[45] SHIRLEY L G. Method and apparatus for remote sensing of objects utilizing radiation speckle: US, 10281257[P]. 2019-05-07.
[46] 朱磊, 邵晓鹏. 散射成像技术的研究进展[J]. 光学学报,2020,40(1):0111005. doi: 10.3788/AOS202040.0111005

ZHU L, SHAO X P. Research progress on scattering imaging technology[J]. Acta Optica Sinica, 2020, 40(1): 0111005. (in Chinese) doi: 10.3788/AOS202040.0111005
[47] BERTOLOTTI J, VAN PUTTEN E G, BLUM C, et al. Non-invasive imaging through opaque scattering layers[J]. Nature, 2012, 491(7423): 232-234. doi: 10.1038/nature11578
[48] KATZ O, HEIDMANN P, FINK M, et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations[J]. Nature Photonics, 2014, 8(10): 784-790. doi: 10.1038/nphoton.2014.189
[49] WU T F, KATZ O, SHAO X P, et al. Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis[J]. Optics Letters, 2016, 41(21): 5003-5006. doi: 10.1364/OL.41.005003
[50] ANDO T, HORISAKI R, TANIDA J. Speckle-learning-based object recognition through scattering media[J]. Optics Express, 2015, 23(26): 33902-33910. doi: 10.1364/OE.23.033902
[51] HORISAKI R, TAKAGI R, TANIDA J. Learning-based imaging through scattering media[J]. Optics Express, 2016, 24(13): 13738-13743. doi: 10.1364/OE.24.013738
[52] TAKAGI R, HORISAKI R, TANIDA J. Object recognition through a multi-mode fiber[J]. Optical Review, 2017, 24(2): 117-120. doi: 10.1007/s10043-017-0303-5
[53] 万剑华, 韩仲志. 多模式融合下的海洋溢油高光谱成像油种识别方法[J]. 发光学报,2016,37(4):473-480. doi: 10.3788/fgxb20163704.0473

WAN J H, HAN ZH ZH. Oil spills identification using hyperspectral imaging based on multi-pattern method[J]. Chinese Journal of Luminescence, 2016, 37(4): 473-480. (in Chinese) doi: 10.3788/fgxb20163704.0473
[54] 丁佳兴, 杨晓玉. 可见/近红外高光谱成像技术对鸡蛋种类无损判别[J]. 发光学报,2018,39(3):394-402. doi: 10.3788/fgxb20183903.0394

DING J X, YANG X Y. Non-destructive discrimination of different kinds egg by Vis/NIR hyperspectral imaging technique[J]. Chinese Journal of Luminescence, 2018, 39(3): 394-402. (in Chinese) doi: 10.3788/fgxb20183903.0394
[55] VALENT E, SILBERBERG Y. Scatterer recognition via analysis of speckle patterns[J]. Optica, 2018, 5(2): 204-207. doi: 10.1364/OPTICA.5.000204
[56] LYU M, WANG H, LI G W, et al. Learning-based lensless imaging through optically thick scattering media[J]. Advanced Photonics, 2019, 1(3): 036002.
[57] LEI X, HE L Y, TAN Y X, et al.. Direct object recognition without line-of-sight using optical coherence[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2019: 11729-11738.