[1] 陈飘飘, 邢怡晨, 刘洋, 等. 基于DNA QDs@PDA荧光共振能量转移的半胱氨酸传感器[J]. 分析化学,2020,48(1):83-89.

CHEN P P, XING Y CH, LIU Y, et al. DNA Quantum Dots@Polydopamine as a fluorescent sensor for cysteine detection based on fluorescence resonance energy transfer effect[J]. Chinese Journal of Analytical Chemistry, 2020, 48(1): 83-89. (in Chinese)
[2] MEDINTZ I L, UYEDA H T, GOLDMAN E R, et al. Quantum dot bioconjugates for imaging, labelling and sensing[J]. Nature Materials, 2005, 4(6): 435-446. doi: 10.1038/nmat1390
[3] 杜方凯, 张慧, 谭学才, 等. 基于氮掺杂石墨烯量子点/硫化镉纳米晶电化学发光传感器检测硫化氢[J]. 分析化学,2020,48(2):240-247.

DU F K, ZHANG H, TAN X C, et al. Detection of hydrogen sulfide based on nitrogen-doped graphene quantum dots/cadmium sulfide nanocrystals electrochemiluminescence sensor[J]. Chinese Journal of Analytical Chemistry, 2020, 48(2): 240-247. (in Chinese)
[4] 康倩文, 张国, 柴瑞涛, 等. 基于碳纳米点荧光增强检测铝离子[J]. 分析化学,2019,47(12):1901-1908.

KANG Q W, ZHANG G, CHAI R T, et al. Synthesis of carbon nanodots for detection of aluminum ion with fluorescence enhancement[J]. Chinese Journal of Analytical Chemistry, 2019, 47(12): 1901-1908. (in Chinese)
[5] 陈蜜, 岳仁叶, 李智, 等. 串联的纳米传感器用于癌细胞中miRNA的超灵敏检测[J]. 分析化学,2020,48(1):40-48.

CHEN M, YUE R Y, LI ZH, et al. Cascaded nanosensors for ultrasensitive detection of miRNA in cancer cells[J]. Chinese Journal of Analytical Chemistry, 2020, 48(1): 40-48. (in Chinese)
[6] GUASTO J S, BREUER K S. High-speed quantum dot tracking and velocimetry using evanescent wave illumination[J]. Experiments in Fluids, 2009, 47(6): 1059. doi: 10.1007/s00348-009-0700-z
[7] CUI L, ZHANG T, MORGAN H. Optical particle detection integrated in a dielectrophoretic lab-on-a-chip[J]. Journal of Micromechanics and Microengineering, 2002, 12(1): 7-12. doi: 10.1088/0960-1317/12/1/302
[8] HISHIDA K, SAKAKIBARA J. Combined planar laser-induced fluorescence–particle image velocimetry technique for velocity and temperature fields[J]. Experiments in Fluids, 2000, 29(1): S129-S140.
[9] STRUBEL V, SIMOENS S, VERGNE P, et al. Fluorescence tracking and μ-PIV of individual particles and lubricant flow in and around lubricated point contacts[J]. Tribology Letters, 2017, 65(3): 75. doi: 10.1007/s11249-017-0859-z
[10] VARELA S, BALAGUÉ I, SANCHO I, et al. Functionalised alginate flow seeding microparticles for use in Particle Image Velocimetry (PIV)[J]. Journal of Microencapsulation, 2016, 33(2): 153-161. doi: 10.3109/02652048.2016.1142016
[11] MEINHART C D, WERELEY S T, SANTIAGO J G. PIV measurements of a microchannel flow[J]. Experiments in Fluids, 1999, 27(5): 414-419. doi: 10.1007/s003480050366
[12] SANTIAGO J G, WERELEY S T, MEINHART C D, et al. A particle image velocimetry system for microfluidics[J]. Experiments in Fluids, 1998, 25(4): 316-319. doi: 10.1007/s003480050235
[13] JIN S, HUANG P, PARK J, et al. Near-surface velocimetry using evanescent wave illumination[J]. Experiments in Fluids, 2004, 37(6): 825-833. doi: 10.1007/s00348-004-0870-7
[14] SADR R, YODA M, ZHENG Z, et al. An experimental study of electro-osmotic flow in rectangular microchannels[J]. Journal of Fluid Mechanics, 2004, 506: 357-367. doi: 10.1017/S0022112004008626
[15] ZETTNER C, YODA M. Particle velocity field measurements in a near-wall flow using evanescent wave illumination[J]. Experiments in Fluids, 2003, 34(1): 115-121. doi: 10.1007/s00348-002-0541-5
[16] POUYA S, KOOCHESFAHANI M, SNEE P, et al. Single Quantum Dot (QD) imaging of fluid flow near surfaces[J]. Experiments in Fluids, 2005, 39(4): 784-786. doi: 10.1007/s00348-005-0004-x
[17] OKAMOTO K, NISHIO S, SAGA T, et al. Standard images for particle-image velocimetry[J]. Measurement Science and Technology, 2000, 11(6): 685-691. doi: 10.1088/0957-0233/11/6/311
[18] FOREMAN M R, SWAIM J D, VOLLMER F. Whispering gallery mode sensors[J]. Advances in Optics and Photonics, 2015, 7(2): 168-240. doi: 10.1364/AOP.7.000168
[19] BUTT M A, KHONINA S N, KAZANSKIY N L. Hybrid plasmonic waveguide-assisted Metal–Insulator–Metal ring resonator for refractive index sensing[J]. Journal of Modern Optics, 2018, 65(9): 1135-1140. doi: 10.1080/09500340.2018.1427290
[20] WHITE I M, ZHU H Y, SUTER J D, et al. Refractometric sensors for lab-on-a-chip based on optical ring resonators[J]. IEEE Sensors Journal, 2007, 7(1): 28-35. doi: 10.1109/JSEN.2006.887927
[21] KWON M S, STEIER W H. Microring-resonator-based sensor measuring both the concentration and temperature of a solution[J]. Optics Express, 2008, 16(13): 9372-9377. doi: 10.1364/OE.16.009372
[22] LIU ZH H, LIU L, ZHU Z D, et al. Whispering gallery mode temperature sensor of liquid microresonastor[J]. Optics Letters, 2016, 41(20): 4649-4652. doi: 10.1364/OL.41.004649
[23] XU H T, HAFEZI M, FAN J, et al. Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures[J]. Optics Express, 2014, 22(3): 3098-3104. doi: 10.1364/OE.22.003098
[24] KOCH B, YI Y, ZHANG J Y, et al. Reflection-mode sensing using optical microresonators[J]. Applied Physics Letters, 2009, 95(20): 201111. doi: 10.1063/1.3263143
[25] LI B B, CLEMENTS W R, YU X C, et al. Single nanoparticle detection using split-mode microcavity Raman lasers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(41): 14657-14662. doi: 10.1073/pnas.1408453111
[26] ZHI Y Y, YU X CH, GONG Q H, et al. Single nanoparticle detection using optical microcavities[J]. Advanced Materials, 2017, 29(12): 1604920. doi: 10.1002/adma.201604920
[27] FERN R E, ONTON A. Refractive index of AlAs[J]. Journal of Applied Physics, 1971, 42(9): 3499-3500. doi: 10.1063/1.1660760
[28] YEE K. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302-307. doi: 10.1109/TAP.1966.1138693
[29] CHEN ZH H, WANG Y, YANG Y B, et al. Enhanced normal-direction excitation and emission of dual-emitting quantum dots on a cascaded photonic crystal surface[J]. Nanoscale, 2014, 6(24): 14708-14715. doi: 10.1039/C4NR03851G