[1] OKU H, HASHIMOTO K, ISHIKAWA M. Variable-focus lens with 1-kHz bandwidth[J]. Optics Express, 2004, 12(10): 2138-2149. doi: 10.1364/OPEX.12.002138
[2] REN H W, WU S T. Variable-focus liquid lens[J]. Optics Express, 2007, 15(10): 5931-5936. doi: 10.1364/OE.15.005931
[3] 贾洁姝.电控全息可变焦透镜的性能研究[D].哈尔滨: 哈尔滨工业大学, 2013: 1-7.

JIA J SH. Performance study of tunable-focus electroholography lens[D]. Harbin: Harbin Institute of Technology, 2013: 1-7. (in Chinese)
[4] 张检发, 袁晓东, 秦石乔.可调太赫兹与光学超材料[J].中国光学, 2014, 7(3): 349-364. http://www.chineseoptics.net.cn/CN/abstract/abstract9144.shtml

ZHANG J F, YUAN X D, QIN SH Q. Tunable terahertz and optical metamaterials[J]. Chinese Optics, 2014, 7(3): 349-364. (in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9144.shtml
[5] ZHELUDEV N I. The road ahead for metamaterials[J]. Science, 2010, 328(5978): 582-583. doi: 10.1126/science.1186756
[6] FEDOTOV V A, MLADYONOV P L, PROSVIRNIN S L, et al.Asymmetric propagation of electromagnetic waves through a planar chiral structure[J]. Physical Review Letters, 2006, 97(16): 167401. doi: 10.1103/PhysRevLett.97.167401
[7] LANDY N I, SAJUYIGBE S, MOCK J J, et al.Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. doi: 10.1103/PhysRevLett.100.207402
[8] ZHELUDEV N I, KIVSHAR Y S. From metamaterials to metadevices[J]. Nature Materials, 2012, 11(11): 917-924. doi: 10.1038/nmat3431
[9] KILDISHEV A V, BOLTASSEVA A, SHALAEV V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125): 1232009. doi: 10.1126/science.1232009
[10] YU N F, CAPASSO F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139-150. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=551bc932ce7f12295ea2c36e57d9610e
[11] GENEVET P, CAPASSO F, AIETA F, et al.Recent advances in planar optics: from plasmonic to dielectric metasurfaces[J]. Optica, 2017, 4(1): 139-152. http://cn.bing.com/academic/profile?id=342e96585f9acadfeb719602a4ee2d3e&encoded=0&v=paper_preview&mkt=zh-cn
[12] DING F, PORS A, BOZHEVOLNYI S I. Gradient metasurfaces: a review of fundamentals and applications[J]. Reports on Progress in Physics, 2018, 81(2): 026401. doi: 10.1088/1361-6633/aa8732
[13] YU N F, AIETA F, GENEVET P, et al.A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(12): 6328-6333. doi: 10.1021/nl303445u
[14] SIDDIQUE R H, MERTENS J, HÖLSCHER H, et al.Scalable and controlled self-assembly of aluminum-based random plasmonic metasurfaces[J]. Light: Science & Applications, 2017, 6(7): e17015. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201703013
[15] PORS A, NIELSEN M G, ERIKSEN R L, et al.Broadband focusing flat mirrors based on plasmonic gradient metasurfaces[J]. Nano Letters, 2013, 13(2): 829-834. doi: 10.1021/nl304761m
[16] ZHENG G X, MVHLENBERND H, KENNEY M, et al.Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312. https://www.ncbi.nlm.nih.gov/pubmed/25705870
[17] REN M X, WU W, CAI W, et al.Reconfigurable metasurfaces that enable light polarization control by light[J]. Light: Science & Applications, 2017, 6(6): e16254. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201702019
[18] ROGERS E T F, LINDBERG J, ROY T, et al.A super-oscillatory lens optical microscope for subwavelength imaging[J]. Nature Materials, 2012, 11(5): 432-435. doi: 10.1038/nmat3280
[19] WINTZ D, GENEVET P, AMBROSIO A, et al.Holographic metalens for switchable focusing of surface plasmons[J]. Nano Letters, 2015, 15(5): 3585-3589. doi: 10.1021/acs.nanolett.5b01076
[20] KHORASANINEJAD M, CAPASSO F. Metalenses: versatile multifunctional photonic components[J]. Science, 2017, 358(6367): eaam8100. doi: 10.1126/science.aam8100
[21] WANG SH M, WU P C, SU V C, et al.Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8(1): 187. doi: 10.1038/s41467-017-00166-7
[22] WANG SH M, WU P C, SU V C, et al.A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3): 227-232. http://cn.bing.com/academic/profile?id=05a99d3d4fdf9a529f1dcbde67ecfda3&encoded=0&v=paper_preview&mkt=zh-cn
[23] CHEN K, FENG Y J, MONTICONE F, et al.A reconfigurable active Huygens' Metalens[J]. Advanced Materials, 2017, 29(17): 1606422. doi: 10.1002/adma.201606422
[24] HUANG Z D, HU B, LIU W G, et al.Dynamical tuning of terahertz meta-lens assisted by graphene[J]. Journal of the Optical Society of America B, 2017, 34(9): 1848-1854. doi: 10.1364/JOSAB.34.001848
[25] 陈勰宇, 田震.石墨烯太赫兹波动态调制的研究进展[J].中国光学, 2017, 10(1): 86-97. http://www.chineseoptics.net.cn/CN/abstract/abstract9505.shtml

CHEN X Y, TIAN ZH. Recent progress in terahertz dynamic modulation based on graphene[J]. Chinese Optics, 2017, 10(1): 86-97. (in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9505.shtml
[26] KIM T T, KIM H, KENNEY M, et al.Amplitude modulation of anomalously refracted terahertz waves with gated-graphene metasurfaces[J]. Advanced Optical Materials, 2018, 6(1): 1700507. doi: 10.1002/adom.201700507
[27] SHE A L, ZHANG SH Y, SHIAN S, et al.Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift[J]. Science Advances, 2018, 4(2): eaap9957. doi: 10.1126/sciadv.aap9957
[28] FOROUZMAND A, SALARY M M, INAMPUDI S, et al.A tunable multigate indium-tin-oxide-assisted all-dielectric metasurface[J]. Advanced Optical Materials, 2018, 6(7): 1701275. doi: 10.1002/adom.201701275
[29] KAO T S, CHEN Y G, HONG M H. Controlling the near-field excitation of nano-antennas with phase-change materials[J]. Beilstein Journal of Nanotechnology, 2013, 4: 632-637. doi: 10.3762/bjnano.4.70
[30] CHEN Y G, KAO T S, NG B, et al.Hybrid phase-change plasmonic crystals for active tuning of lattice resonances[J]. Optics Express, 2013, 21(11): 13691-13698. doi: 10.1364/OE.21.013691
[31] MICHEL A K U, CHIGRIN D N, MA T W W, et al.Using low-loss phase-change materials for mid-infrared antenna resonance tuning[J]. Nano Letters, 2013, 13(8): 3470-3475. doi: 10.1021/nl4006194
[32] CHEN Y G, LI X, SONNEFRAUD Y, et al.Engineering the phase front of light with phase-change material based planar lenses[J]. Scientific Reports, 2015, 5: 8660. doi: 10.1038/srep08660
[33] WANG Q, ROGERS E T F, GHOLIPOUR B, et al.Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 2016, 10(1): 60-65. doi: 10.1038/nphoton.2015.247
[34] ZHONG J W, AN N, YI N B, et al.Broadband and tunable-focus flat lens with dielectric metasurface[J]. Plasmonics, 2016, 11(2): 537-541. doi: 10.1007/s11468-015-0087-z
[35] 秦雷, 谢晓瑛, 李君龙. MEMS技术发展现状及未来发展趋势[J].现代防御技术, 2017, 45(4): 1-5, 23. doi: 10.3969/j.issn.1009-086x.2017.04.001

QIN L, XIE X Y, LI J L. Development status and future development trend of MEMS technology[J]. Modern Defense Technology, 2017, 45(4): 1-5, 23. (in Chinese) doi: 10.3969/j.issn.1009-086x.2017.04.001
[36] LIN L Y, HERZIG H P. Introduction to the feature section on optical MEMS and nanophotonics[J]. IEEE Journal of Quantum Electronics, 2010, 46(9): 1235-1236. doi: 10.1109/JQE.2010.2052950
[37] ROY T, ZHANG SH Y, JUNG I W, et al.Dynamic metasurface lens based on MEMS technology[J]. APL Photonics, 2018, 3(2): 021302. doi: 10.1063/1.5018865
[38] ARBABI E, ARBABI A, KAMALI S M, et al.MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 2018, 9(1): 812. doi: 10.1038/s41467-018-03155-6
[39] COLBURN S, ZHAN A L, MAJUMDAR A. Varifocal zoom imaging with large area focal length adjustable metalenses[J]. Optica, 2018, 5(7): 825-831. doi: 10.1364/OPTICA.5.000825
[40] EE H S, AGARWAL R. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Letters, 2016, 16(4): 2818-2823. doi: 10.1021/acs.nanolett.6b00618
[41] MAHSA KAMALI S, ARBABI E, ARBABI A, et al.Highly tunable elastic dielectric metasurface lenses[J]. Laser & Photonics Reviews, 2016, 10(6): 1002-1008. http://cn.bing.com/academic/profile?id=be14a2a8e0fb9e0ac9fe6fd0be8c1010&encoded=0&v=paper_preview&mkt=zh-cn
[42] CALLEWAERT F, VELEV V, JIANG SH ZH, et al.Inverse-designed stretchable metalens with tunable focal distance[J]. Applied Physics Letters, 2018, 112(9): 091102. doi: 10.1063/1.5017719
[43] ZHU W M, SONG Q H, YAN L B, et al.A flat lens with tunable phase gradient by using random access reconfigurable metamaterial[J]. Advanced Materials, 2015, 27(32): 4739-4743. doi: 10.1002/adma.201501943
[44] ZHANG J F, MACDONALD K F, ZHELUDEV N I. Nonlinear dielectric optomechanical metamaterials[J]. Light: Science & Applications, 2013, 2(8): e96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0c13a3cfae31c277383c83efaedb7feb
[45] OU J Y, PLUM E, ZHANG J F, et al.Giant nonlinearity of an optically reconfigurable plasmonic metamaterial[J]. Advanced Materials, 2016, 28(4): 729-733. doi: 10.1002/adma.201504467
[46] AURO M P, SERGEI K T, KESTUTIS S. Gain through losses in nonlinear optics[J]. Light: science & Applications, 2018, 7, e43. http://cn.bing.com/academic/profile?id=bc48b9e7d207bcc1b1181964de9f0794&encoded=0&v=paper_preview&mkt=zh-cn
[47] ZHU Y, HU X Y, FU Y L, et al.Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range[J]. Scientific Reports, 2013, 3: 2338. doi: 10.1038/srep02338
[48] DANI K M, KU Z, UPADHYA P C, et al.Subpicosecond optical switching with a negative index metamaterial[J]. Nano Letters, 2009, 9(10): 3565-3569. doi: 10.1021/nl9017644
[49] CHEN J, WANG K, LONG H, et al.Tungsten disulfide-gold nanohole hybrid metasurfaces for nonlinear metalenses in the visible region[J]. Nano Letters, 2018, 18(2): 1344-1350. doi: 10.1021/acs.nanolett.7b05033
[50] SCHLICKRIEDE C, WATERMAN N, REINEKE B, et al.Imaging through nonlinear metalens using second harmonic generation[J]. Advanced Materials, 2018, 30(8): 1703843. doi: 10.1002/adma.201703843