[1] SCHAWLOW A L,TOWNES C H. Infrared and optical masers[J]. Phy. Rev.,1958,112:1940-1949. [2] WANG Z B,JOSEPH N,LI L,et al.. A review of optical near-fields in particle/tip-assisted laser nanofabrication[J]. Mechanical Eng. Sci.,2010,224:1113-1125. [3] GUO W,WANG Z B,LI L,et al.. Near-field laser parallel nanofabrication of arbitrary-shaped patterns[J]. Appl. Phys. Lett.,2007,90:243101. [4] SCHULLER J A,BARNARD E S,CAI W SH,et al.. Plasmonics for extreme light concentration and manipulation[J]. Nature Mate.,2010,9:193-204. [5] BARNARD D K,BOZHEVOLNYI S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics,2010,4:83-91. [6] ANKER J N,HALL W P,LYANDRES O,et al.. Biosensing with plasmonic nanosensors[J]. Nature Mater.,2008,7:442-453. [7] DIONNE J A,DIEST K,SWEATLOCK L A,et al.. Ametal-oxide-Si field effect plasmonic modulator[J]. Nano Lett.,2009,9:897-902. [8] ZIJLSTRA P,CHON J W M,GU M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature,2009,459:410-413. [9] CHALLENER W A,PENG CH B,ITAGI A V,et al.. Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer[J]. Nature Photonics,2009,3:220-224. [10] 雷建国,刘天航,林景全,等. 表面等离子体激光的若干新应用[J]. 中国光学与应用光学,2010,3(5):432-439. LEI J G,LIU T H,LIN J Q,et al.. New applications of surface plasmon polaritons[J]. Chinese J. Opt. Appl. Opt.,2010,3(5):432-439.(in Chinese) [11] LIU JUAN,WANG Y T,XU L W,et al.. Contribution of surface plasmon polaritons to extraordinary optical transmission through metallic nanoslit[J]. Chinese J. Opt. Appl. Opt..,2010,3(1):33-37. [12] STIPE B C,STRAND T C,POON C C,et al.. Magnetic recording at 1: 5 Pb m-2 using an integrated plasmonic antenna[J]. Nature Photonics,2010,4:484-488. [13] BARNES W L,DEREUX A,EBBESEN T W S. Surface plasmon subwavelength optics[J]. Nature,2003,424:824-830. [14] BOZHEVOLNYI S I,VOLKOV V S,DEVAUX E,et al.. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature,2006,440:508-511. [15] AKIMOV A V,MUKHERJEE A,YU C L,et al.. Generation of single optical plasmons in metallic nanowires coupled to quantum dots[J]. Nature,2007,450:402-406. [16] LIEBERG B,Nylander C,NYLANDER M I. Surface plasmon resonance for gas detection and biosensing[J]. Sensors and Actuators,1983,4:299-304. [17] ATWATER A H. The promise of plasmonics[J]. Sci. Am.,2007,296(4):56-63. [18] PAN L,PARK Y,XIONG Y,et al.. Maskless plasmonic lithography at 22 nm resolution[J]. Scientific Reports,2011,1:175 [19] BERGMAN D J,STOCKMAN M I. Surface plasmon amplification by stimulated emission of radiation:quantum generation of coherent surface plasmons in nanosystems[J]. Phys. Rev. Lett.,2003,90:027402 [20] MAISER S A. Plasmonics:Fundamentals and Aplications[M]. Berlin:Springer-verlag,2006. [21] BRONGERSMA M L,KIK P G. Surface Plasmon Nanophotonics[M]. Berlin:Springer-verlag,2007. [22] RAETHER H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings[M]. Berlin:Springer-verlag,1988. [23] 顾本源.表面等离子体激元亚波长光学原理和新颖效应[J]. 物理,2007,36(4): 280-287. GU B Y. Surface plasmon subwavelength optics:principles and novel effects[J]. Physics,2007,36(4):280-287.(in Chinese) [24] OULTON R F,PILE D F P,LIU Y,et al.. Scattering of surface plasmon polaritons at abrupt surface interfaces:implications for nanoscale cavities[J]. Phys. Rev. B,2007,76:035408. [25] OZBAY E. Plasmonics:merging photonics and electronics at nanoscale dimensions[J]. Science,2006,311:189-193. [26] CONWAY J A,SAHNI S,SZKOPEK T. Plasmonic interconnects versus conventional interconnects:a comparison of latency,crosstalk and energy costs[J]. Opt. Express,2007,15(8):4474-4484. [27] JACOB Z,SHALAEV V M. Plasmonics goes quantum[J]. Science,2011,334:463-464. [28] KRASAVIN A V,ZAYATS A V. Silicon-based plasmonic waveguides[J]. Opt. Express,2010,18:11791-11799 [29] CHANG S W,LIN T R,CHUANG S L. Theory of plasmonic fabry-perot nanolasers[J]. Opt. Express,2010,18(14):15039-15053. [30] CHANG S W,CHUANG S L. Fundamental formulation for plasmonic nanolasers[J]. IEEE J. Quantum Elect.,2009,45(8):1014-1023. [31] STOCKMAN M I. Spasers explained[J]. Nature Photonics,2008,2: 327-329. [32] FORD G W,WEBER W H. Electromagnetic interactions of molecules with metal surfaces[J]. Physics Reports(Review Section for Physics Letters),1984,113(4):195-287. [33] LEON I D,BERINI P. Amplification of long-range surface plasmons by a dipolar gain medium[J]. Nature Photonics,2010,4:382-387. [34] ZHELUDEV N I,PROSVIRNIN S L,PAPASIMAKIS N,et al.. Lasing spaser[J]. Nature Photonics,2008,2:351-354. [35] ZHANG S,GENOV D A,WANG Y,et al.. Plasmon-induced transparency in metamaterials[J]. Phys. Rev. Lett.,2008,101:047401. [36] LIU M Z,LEE T W,GRAY S K,et al.. Excitation of dark plasmons in metal nanoparticles by a localized emitter[J]. Phys. Rev. Lett.,2009,102:107401. [37] KOH A L,BAO K,KHAN I,et al.. Electron energy-loss spectroscopy(EELS) of surface plasmons in single silver nanoparticles and dimers:influence of beam damage and mapping of dark modes[J]. ACS Nano,2009,3:3015-3022. [38] CHU M W,MYROSHNYCHENKO V,CHEN C H,et al..Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam[J]. Nano Lett.,2009,9(1):399-404. [39] KLIMOV V,GUO G Y. Bright and dark plasmon modes in three nanocylinder cluster[J]. J. Phys. Chem. C,2010,114(51):22398-22405. [40] DONG Z G,LIU H,LI T,et al.. Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars[J]. Opt. Express,2010,18:18229-18234. [41] BIRIS C G,PANOIU N C. Excitation of dark plasmonic cavity modes via nonlinearly induced dipoles:applications to near-infrared plasmonic sensing[J]. Nanotechnology,2011,22:235502. [42] FEDOTOV V A,ROSE M,PROSVIRNIN S L,et al.. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry[J]. Phys. Rev. Lett.,2007,99:147401. [43] 杨欢,李飞,罗先刚,等. 基于复合纳米结构的局域表面等离子体光学传感器[J]. 光学与光电技术,2010,8(2):80-83. YANG H,LI F,LUO X G,et al.. Localized surface plasmomic biosensor based on composite nanostructures[J]. Optics & Optoelectronic Technology,2010,8(2):80-83.(in Chinese) [44] NOGINOV M A,ZHU G,BELGRAVE A M,et al.. Demonstration of a spaser-based nanolaser[J]. Nature,2009,460:1110-1112. [45] LAWANDY N M. Localized surface plasmon singularities in amplifying media[J]. Appl. Phys. Lett.,2004,85:5040. [46] LAWANDY N M. Interactions of charged particles on surfaces[J]. Appl. Phys. Lett.,2009,95:234101. [47] GHANNAM T. Dipole nano-laser: the effect of an external electric field[J]. J. Phys. B:At. Mol. Opt. Phys.,2010,43:155505-155510. [48] NOGINOV M A,ZHU G,BAHOURA M,et al.. Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium[J]. Opt. Lett.,2006,31:3022-3024. [49] NOGINOV M A,ZHU G,BAHOURA M,et al.. The effect of gain and absorption on surface plasmons in metal nanoparticles[J]. Appl. Phys. B,2007,86:455-460. [50] OULTON R F,SORGER V J,ZENTGRAF T,et al.. Plasmon lasers at deep subwavelength scale[J]. Nature,2009,461:629-632. [51] OULTON R F,SORGER V J,GENOV D A,et al.. A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation[J]. Nature Photonics,2008,2:495-500. [52] LIN ZH. Modal properties of hybrid plasmonic waveguides for nanolaser applications[J]. IEEE Photonics Technol. Lett.,2010,22(8):535-537. [53] HILL M T,OEI Y S,SMALBRUGGE B,et al.. Lasing in metallic-coated nanocavities[J]. Nature Photonics,2007,1:589-594. [54] NEZHAD M P,SIMIC A,BONDAENKO O,et al.. Room-temperature subwavelength metallo-dielectric lasers[J]. Nature Photonics,2010,4:395-399. [55] KOLLER D M,HOHENAU A,DITLBACHER H,et al.. Organic plasmon-emitting diode[J]. Nature Photonics,2008,2:684-687. [56] WALTERS R J,LOON R V A VAN,BRUNETS I,et al.. A silicon-based electrical source of surface plasmon polaritons[J]. Nature Mater,2009,9:21-25. [57] WALTHER C,SCALARI G,AMANTI M I,et al.. Microcavity laser oscillating in a circuit-based resonator[J]. Science,2010,327(5972):1495-1497. [58] HILL M T,MARELL M,LEONG E S P,et al.. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides[J]. Opt.Express,2009,17(13):11107-11112. [59] AKAHANE Y,ASANO T,SONG B S,et al.. High-Q photonic nanocavity in a two-dimensional photonic crystal[J]. Nature,2003,425:994. [60] SANVITTO D, DARAEI A, TAHRAOUI A,et al.. Observation of ultrahigh quality factor in a semiconductor microcavity[J]. Appl. Phys. Lett.,2005,86:191109. [61] MA R M,RUPERT F,OULTON R F,et al.. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection[J]. Nature Materials,2010,10:110-113. [62] ARAKAWA E T,WILLIAMS M W,HAMM R N,et al.. Effect of damping on surface plasmon dispersion[J]. Phys. Rev. Lett.,1973,3:1127-1129. [63] OKAMOTO T,H'DHILI F,KAWATA S. Towards plasmonic band gap laser[J]. Appl. Phys. Lett.,2004,85:3968. [64] WINTER G,WEDGE S,BARNES W L. Can lasing at visible wavelengths be achieved using the low-loss long-range surface plasmon-polariton mode?[J]. New J. Phys.,2006,8:125. [65] ALAM M Z,MEIER J,AITCHISON J S,et al.. Gain assisted surface plasmon polariton in quantum wells structures[J]. Opt. Express,2007,15:176-182. [66] de LEON I,BERINI P P. Theory of surface plasmon-polariton amplification in planar structures incorporating dipolar gain media[J]. Phys. Rev. B,2008,78:161401. [67] GENOV D A,AMBATI M,ZHANG X. Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach[J]. Phys. Rev. B,2008,77:115425.