[1] 邢笑雪, 王宪伟, 秦宏伍, 等. PbSe量子点近红外光源的CH4气体检测[J].中国光学, 2018, 11(4):662-668. http://www.chineseoptics.net.cn/CN/abstract/abstract9603.shtml

XING X X, WANG X W, QIN H W, et al.. CH4 detection based on near-infrared luminescence of PbSe quantum dots[J]. Chinese Optics, 2018, 11(4):662-668. (in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9603.shtml
[2] 姜相宇, 付华, 张敏, 等.二硫化钼量子点荧光传感器检测盐酸多西环素的研究[J].分析化学, 2018, 46(7):1077-1083. http://d.old.wanfangdata.com.cn/Periodical/fxhx201807011

JIANG X Y, FU H, ZHANG M, et al.. Molybdenum disulfide quantum dots-based fluorescence sensor for detection of doxycycline Hyclate[J]. Chinese Journal of Analytical Chemistry, 2018, 46(7):1077-1083. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201807011
[3] PARFENOV A, GRYCZYNSKI I, MALICKA J, et al.. Enhanced fluorescence from fluorophores on fractal silver surfaces[J]. The Journal of Physical Chemistry B, 2003, 107(34):8829-8833. doi: 10.1021/jp022660r
[4] 邹小波, 史永强, 郑悦, 等.基于荧光共振能量转移的金纳米粒子/碳量子点荧光纳米探针检测精氨酸[J].分析化学, 2018, 46(6):960-968. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxhx201806022

ZOU X B, SHI Y Q, ZHENG Y, et al.. Detection of arginine by AuNPs/CQDs nanoprobes based on fluorescence resonance energy transfer effect[J]. Chinese Journal of Analytical Chemistry, 2018, 46(6):960-968. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxhx201806022
[5] 任升, 刘丽炜, 李金华, 等.纳米尺度下的局域场增强研究进展[J].中国光学, 2018, 11(1):31-46. http://www.chineseoptics.net.cn/CN/abstract/abstract9558.shtml

REN SH, LIU L W, LI J H, et al.. Advances in the local field enhancement at nanoscale[J]. Chinese Optics, 2018, 11(1):31-46. (in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9558.shtml
[6] ASLAN K, PREVITE M J R, ZHANG Y X, et al.. Metal-enhanced fluorescence from nanoparticulate zinc films[J]. The Journal of Physical Chemistry C, 2008, 112(47):18368-18375. doi: 10.1021/jp806790u
[7] KOSAKO T, KADOYA Y, HOFMANN H F. Directional control of light by a nano-optical Yagi-Uda antenna[J]. Nature Photonics, 2010, 4:312-315. doi: 10.1038/nphoton.2010.34
[8] ANDERSEN S K H, BOGDANOV S, MAKAROVA O, et al.. Hybrid plasmonic bullseye antennas for efficient photon collection[J]. ACS Photonics, 2018, 5(3):692-698. doi: 10.1021/acsphotonics.7b01194
[9] RUTCKAIA V, HEYROTH F, NOVIKOV A, et al.. Quantum dot emission driven by Mie resonances in silicon nanostructures[J]. Nano Letters, 2017, 17(11):6886-6892. doi: 10.1021/acs.nanolett.7b03248
[10] ALBELLA P, POYLI M A, SCHMIDT M K, et al.. Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers[J]. The Journal of Physical Chemistry C, 2013, 117(26):13573-13584. doi: 10.1021/jp4027018
[11] CAMBIASSO J, KÖNIG M, CORTÉS E, et al.. Surface-enhanced spectroscopies of a molecular monolayer in an all-dielectric nanoantenna[J]. ACS Photonics, 2018, 5(4):1546-1557. doi: 10.1021/acsphotonics.7b01604
[12] BOUCHET D, MIVELLE M, PROUST J, et al.. Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas[J]. Physical Review Applied, 2016, 6(6):064016. doi: 10.1103/PhysRevApplied.6.064016
[13] CALDAROLA M, ALBELLA P, CORTÉS E, et al.. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion[J]. Nature Communications, 2015, 6(1):7915. doi: 10.1038/ncomms8915
[14] REGMI R, BERTHELOT J, WINKLER P M, et al.. All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules[J]. Nano Letters, 2016, 16(8):5143-5151. doi: 10.1021/acs.nanolett.6b02076
[15] GÉRARD D, DEVILEZ A, AOUANI H, et al.. Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere[J]. Journal of the Optical Society of America B, 2009, 26(7):1473-1478. doi: 10.1364/JOSAB.26.001473
[16] YAN Y ZH, ZENG Y, WU Y, et al.. Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays[J]. Optics Express, 2014, 22(19):23552-23564. doi: 10.1364/OE.22.023552
[17] SUN S, WU L, BAI P, et al.. Fluorescence enhancement in visible light:dielectric or noble metal?[J]. Physical Chemistry Chemical Physics, 2016, 18(28):19324-19335. doi: 10.1039/C6CP03303B
[18] 姜杰, 李士浩, 严一楠, 等.氮掺杂高量子产率荧光碳点的制备及其体外生物成像研究[J].发光学报, 2017, 38(12):1567-1574. http://d.old.wanfangdata.com.cn/Periodical/fgxb201712002

JIANG J, LI SH H, YAN Y N, et al.. Preparation of N-doped fluorescent carbon dots with high quanturn yeild for In-vitro bioimaging[J]. Chinese Journal of Luminescense, 2017, 38(12):1567-1574. http://d.old.wanfangdata.com.cn/Periodical/fgxb201712002
[19] PAPASIMAKIS N, FEDOTOV V A, SAVINOV V, et al.. Electromagnetic toroidal excitations in matter and free space[J]. Nature Materials, 2016, 15(3):263-271. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f988e27307430203d81a778edcef1f2b
[20] LU G W, ZHANG T Y, LI W Q, et al.. Single-molecule spontaneous emission in the vicinity of an individual gold nanorod[J]. The Journal of Physical Chemistry C, 2011, 115(32):15822-15828. doi: 10.1021/jp203317d
[21] 蔡小舒, 苏明旭, 沈建琪, 等.颗粒粒度测量技术及应用[M].北京:化学工业出版社, 2010.

CAI X SH, SHU M X, SHEN J Q, et al.. Particle Size Measurement Technology and Application[M]. Beijing:Chemical Industry Press, 2010. (in Chinese)
[22] 张文君, 翟保才, 许键. ZnO作为电子传输层的绿光胶体CdSe量子点LED(QD-LED)的制备与表征[J].发光学报, 2012, 33(11):1171-1176. http://d.old.wanfangdata.com.cn/Periodical/fgxb201211003

ZHANG W J, ZHAI B C, XU J. Fabrication and characterization of green CdSe quantumn dot light emitting diodes with ZnO electron-transport layer[J]. Chinese Journal of Luminescence, 2012, 33(11):1171-1176. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201211003
[23] CAMBIASSO J, GRINBLAT G, LI Y, et al.. Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas[J]. Nano Letters, 2017, 17(2):1219-1225. doi: 10.1021/acs.nanolett.6b05026
[24] DEVILEZ A, STOUT B, BONOD N. Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission[J]. ACS Nano, 2010, 4(6):3390-3396. doi: 10.1021/nn100348d
[25] JIAO X J, BLAIR S. Optical antenna design for fluorescence enhancement in the ultraviolet[J]. Optics Express, 2012, 20(28):29909-29922. doi: 10.1364/OE.20.029909
[26] DAS G M, RINGNE A B, DANTHAM V R, et al.. Numerical investigations on photonic nanojet mediated surface enhanced raman scattering and fluorescence techniques[J]. Optics Express, 2017, 25(17):19822-19831. doi: 10.1364/OE.25.019822
[27] PALIK E D. Handbook of Optical Constants of Solids[M]. San Diego:Academic Press, 1998.
[28] BAKKER R M, PERMYAKOV D, YU Y F, et al.. Magnetic and electric hotspots with silicon nanodimers[J]. Nano Letters, 2015, 15(3):2137-2142. doi: 10.1021/acs.nanolett.5b00128
[29] CHEN ZH G, TAFLOVE A, BACKMAN V. Photonic nanojet enhancement of backscattering of light by nanoparticles:a potential novel visible-light ultramicroscopy technique[J]. Optics Express, 2004, 12(7):1214-1220. doi: 10.1364/OPEX.12.001214