[1]

[1] CHOI J M, SON H M, LEE Y J. Biomimetic variable-focus lens system controlled by winding-type SMA actuator[J]. Optics Express, 2009, 17(10):8152-8164. [2] SON H M, KIM M Y, LEE Y J. Tunable-focus liquid lens system controlled by antagonistic winding-type SMA actuator[J]. Optics Express, 2009, 17(16):14339-14350. [3] WERBER A, ZAPPE H. Tunable microfluidic microlenses[J]. Appl. Optics, 2005, 44(16):3238-3245. [4] AGARWAL M, GUNASEKARAN R A, COANE P, et al.. Polymer-based variable focal length microlens system[J]. J. Micromechanics and Microengineering, 2004, 14(12):1665. [5] ZHOU G, LEUNG H M, YU H, et al.. Liquid tunable diffractive/refractive hybrid lens[J]. Optics Letter, 2009, 34(18):2793-2795. [6] SCHNEIDER F, DRAHEIM J, KAMBERGER R, et al. Optical characterization of adaptive fluidic silicone-membrane lenses[J]. Optics Express, 2009, 17(14):11813-11821. [7] KUIPER S, HENDRIKS B H W. Variable-focus liquid lens for miniature cameras[J]. Appl. Phys. Lett., 2004, 85(7):1128-1130. [8] LEE S W, LEE S S. Focal tunable liquid lens integrated with an electromagnetic actuator[J]. Appl. Phys. Lett., 2007, 90(12):121129. [9] WANG W, FANG J. Design, fabrication and testing of a micromachined integrated tunable microlens[J]. J. Micromechanics and Microengineering, 2006, 16(7):1221. [10] LEE S Y, TUNG H W, CHEN W C, et al.. Novel micro lens with tunable astigmatism[C]. Proceedings of the IEEE Conference on Solid-State Sensors, Actuators and Microsystems(Transducers), Lyon, France, 10-14 June, 2007:2147-2150. [11] DONG L, AGARWAL A K, BEEBE D J, et al.. Adaptive liquid microlenses activated by stimuli-responsive hydrogels[J]. Nature, 2006, 442(7102):551-554. [12] LEE S Y, TUNG H W, CHEN W C, et al.. Thermal actuated solid tunable lens[J]. IEEE Photonics Technology Letters, 2006, 18(21):2191-2193. [13] BEADIE G, SANDROCK M L, WIGGINS M J, et al.. Tunable polymer lens[J]. Optics Express, 2008, 16(16):11847-11857. [14] YANG Y J, LIAO H H. Development and characterization of thermopneumatic peristaltic micropumps[J]. J. Micromechanics and Microengineering, 2009, 19(2):025003. [15] WERBER A, ZAPPE H. Thermo-pneumatically actuated, membrane-based micromirror devices[J]. J. Micromechanics and Microengineering, 2006, 16(12):2524. [16] ZHANG W, ALJASEM K, ZAPPE H, et al.. Completely integrated, thermopneumatically tunable microlens[J]. Optics Express, 2011, 19(3):2347-2362. [17] ZHANG W, ZAPPE H, SEIFERT A. On-chip actuation for focal length tuning of pneumatic micro-lenses[J]. Optics Express, 2013, 19(3):2347-2362. [18] NGUYEN N T. Micro-optofluidic lenses:a review[J]. Biomicrofluidics, 2010, 4(3):031501. [19] DRAHEIM J. Minimalistic adaptive lenses[D]. Freiburg:University of Freiburg, 2011. [20] MERKEL T C, BONDAR V I, NAGAI K, et al.. Gas sorption, diffusion, and permeation in poly(dimethylsiloxane)[J]. J. Polymer Science Part B:Polymer Physics, 2000, 38(3):415-434. [21] JOO Y C K, KANG H, PARK J K. Analysis of pressure-driven air bubble elimination in a microfluidic device[J]. Lab Chip, 2008, 8(1):176-178. [22] ARAM D K, CHUNG J, ERICKSON D. Electrokinetic microfluidic devices for rapid, low power drug delivery in autonomous microsystems[J]. Lab Chip, 2008, 8(2):330-338. [23] ZHANG W, ZAPPE H, SEIFERT A. Polyacrylate membranes for tunable liquid-filled microlenses[J]. Optical Engineering, 2013, 52(4):046601. [24] PELRINE R, KORNBLUH R, PEI Q, et al.. High-speed electrically actuated elastomers with strain greater than 100%[J]. Science, 2000, 287(5454):836-839. [25] ZHANG W, ALJASEM K, ZAPPE H, et al.. Highly flexible MTF measurement system for tunable micro lenses[J]. Optics Express, 2010, 18(12):12458-12469.