[1]

[1] STAHL H P. Optic needs for future space telescopes[J]. SPIE,2003,5180:1-5.
[2] STAHL H P. Development of lightweight mirror technology for the next generation space telescope[J]. SPIE,2001,4451:1-4.
[3] EGERMAN R,MATTHEWS G,WYNN J. The current and future state-of-the-art glass optics for space-based astronomical observatories[R]. US: ITT Corporation.
[4] KENDRICK S,STAHL H P. Large aperture space telescope mirror fabrication trades[J]. SPIE,2008,7010:70102G.
[5] STAHL H P. JWST mirror technology development results[J]. SPIE,2007,6671:667102.
[6] KENDRICK S. Monolithic versus segmented primary mirror concepts for space telescopes[J]. SPIE,2009,7426:74260O.
[7] NEIN M E,LAWRENCE J F. Monolithic vs. deployable primary mirror trade considerations for the next generation space telescope[R]. US:NASA,2002.
[8] CASTEL D,SEIN E,LOPEZ S,et al.. The 3.2 m all SiC telescope for SPICA[J]. SPIE,2012,8450:84502P.
[9] KANEDA H,NAKAGAWA T,ENYA K,et al.. Optical testing activities for the SPICA telescope[J]. SPIE,2010,7731:77310V.
[10] BORUCKI W J,KOCH D G,LISSAUERA J,et al.. The kepler mission:a wide field of view photometer designed to determine the frequency of earth-size planets around solar-like stars[J]. SPIE,2003,4854:129-140.
[11] KOCH D,BORUCKI W,DUNHAM E. Overview and status of the Kepler Mission[J]. SPIE,2004,5487:1491-1500.
[12] LAMPTON M,SHOLL M,KRIM M. SNAP telescope: an update[J]. SPIE,2004,5166:113-123.
[13] BESUNER R W,CHOW K P,KENDRICK S E. Selective reinforcement of a 2m-class lightweight mirror for horizontal beam optical testing[J]. SPIE,2008,7018:701816.
[14] STAHL H P. JWST primary mirror technology development lessons learned[J]. SPIE,2010,7796:779604.
[15] ALLEN L,ANGEL R,MANGUS J D,et al.. The hubble space telescope optical systems failure report[R]. US:NASA,1990.
[16] FEINBERG L D,GEITHNER P H. Applying HST lessons learned to JWST[J]. SPIE,2008,7010:70100N.
[17] YODER J P R. Opto-Mechanical Systems Design[M]. 3rd ed. US:SPIE Press,2006.
[18] BITTNER H,ERDMANN M,HABERLER P. SOFIA primary mirror assembly:structural properties and optical performance[J]. SPIE,2003,4857:266-273.
[19] CASEY S C. The SOFIA program:astronomers return to the stratosphere[J]. SPIE,2006,6267:62670Q.
[20] KEAS P,BREWSTER R,GUERRA J. SOFIA Telescope modal survey test and test-model correlation[J]. SPIE,2010,7738:77380K.
[21] KAERCHER J,EISENTRAEGER P,S M. Mechanical principles of large mirror supports[J]. SPIE,2010,7733:77332O.
[22] BOUGOIN M,LAVENAC J. From HERSCHEL to GAIA,3-meter class SiC space optics[J]. SPIE,2011,8126:81260V.
[23] TOULEMONT Y,PASSVOGEL T,PILLBRAT G. The 3,5m all SiC telescope for HERSCHEL[J]. SPIE,2004,5487:1119-1128.
[24] WEST S C,BAILEY S H,BAUMAN S. A space imaging concept based on a 4 m structured spun-cast borosilicate monolithic primary mirror[J]. SPIE,2010,7731:77311O.
[25] MARC P. Science with an 8-meter to 16-meter optical/UV space telescope[J]. SPIE,2008,7010:701021.
[26] STAHL H P. Design study of 8 meter monolithic mirror UV/optical space telescope[J]. SPIE,2008,7010:701022.
[27] WILLIAM R O,FEINBERG L D,PURVES L R. ATLAST-9.2 m:a large-aperture deployable space telescope[J]. SPIE,2010,7731:77312M.
[28] ARGABRIGHT V,ARNOLD B,ARONSTEIN D. Advanced Technology Large-Aperture Space Telescope(ATLAST): a technology roadmap for the next decade[R]. US:NASA,2009.
[29] HYDE T,POSTMAN M. Technology development project plan for the Advanced Technology Large Aperture Space Telescope(ATLAST), a roadmap for UVIOR Technology, 2010-2020[R]. US:NASA,2009.
[30] THORSTEN D,PETER H,RALF J. Status of Zerodur mirror blank production at Schott[J]. SPIE,2005,5869:5869O2.
[31] HULL T,HARTMANN P,R CLARKSON A. Lightweight high-performance 1-4 meter class spaceborne mirrors:emerging technology for demanding spaceborne requirements[J]. SPIE,2010,7739:77390C.
[32] HULL T,WESTERHOFF T,PEPI J W. Game-changing approaches to affordable advanced lightweight mirrors Ⅱ:new cases analyzed for extreme ZERODUR lightweighting and relief from the classical polishing parameter constraint[J]. SPIE,2012,8450:845050.
[33] SCOTT S W,STAHL H P. Overview of mirror technology development for large lightweight space-based optical systems[J]. SPIE,2001,4198:1-5.
[34] 张舸. 1.5 m量级SiC陶瓷素坯凝胶注模成型工艺[J]. 光学精密工程,2013,21(12):2989-2993. ZHANG G. Gelcasting process of 1.5 m SiC ceramic green body[J]. Opt. Precision Eng.,2013,21(12):2989-2993.(in Chinese)
[35] 徐宏,关英俊. 空间相机1 m口径反射镜组件结构设计[J]. 光学精密工程,2013,21(6):1488-1495. XU H,GUAN Y J. Structural design of 1 m diameter space mirror component of space camera[J]. Opt. Precision Eng.,2013,21(6):1488-1495.(in Chinese)
[36] 刘巨,董得义,辛宏伟. 大口径反射镜组件的温度适应性[J]. 光学精密工程,2013,21(12):3169-3175. LIU J,DONG D Y,XIN H W. Temperature adaptation of large aperture mirror assembly[J]. Opt. Precision Eng.,2013,21(12):3169-3175.(in Chinese)