[1]

[1] GALE G M, GALLOT G, HACHE F, et al. Femtosecond dynamics of hydrogen bonds in liquid water: a real time study[J]. Phys. Rev. Lett., 1999, 82(5):1068-1071.
[2] BARROS M R, MIRANDA R S, JEDJU T M, et al. High-repetition-rate femtosecond mid-infrared pulse generation[J]. Opt. Lett., 1995, 20(5):480-482.
[3] NOTAKE T, NAWATA K, KAWAMATA H, et al. Development of an ultra-widely tunable DFG THz source with switching between organic nonlinear crystals pumped with a dualwavelength BBO optical parametric oscillator[J]. Opt. Express, 2012, 20(23):25850-25857.
[4] HUANG S W, CIRMI G, MOSES J, et al. High-energy pulse synthesis with sub-cycle waveform control for strong-field physics[J]. Nat. Photonics, 2011, 5:475-479.
[5] ASSION A, BAUMERT T, BERGT M, et al. Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses[J]. Science, 1998, 282(5390):919-922.
[6] YANG T, ZHANG Q, CHEN T Y, et al. Experimental synchronization of independent entangled photon sources[J]. Phys. Rev. Lett., 2006, 96:110501.
[7] ZHANG Z G, YAGI T. Dual-wavelength synchronous operation of a mode-locked Ti:sapphire laser based on self-spectrum splitting[J]. Opt. Lett., 1993, 18(24):2126 -2128.
[8] TIAN J R, WEI Z Y, WANG P, et al. Independently tunable 1.3 W femtosecond Ti:sapphire lasers passively synchronized with attosecond timing jitter and ultrahigh robustness[J]. Opt. Lett., 2005, 30(16):2161-2163.
[9] WEI Z, KABOYASHI Y, TORIZUKA K. Passive synchronization between femtosecond Ti:sapphire and Cr:forsterite lasers[J]. Appl. Phys. B, 2002, 74(Suppl.):S171-S176.
[10] DUNN M H, EBRAHIMZADEH M. Parametric generation of tunable light from continuous-wave to femtosecond pulses[J]. Science, 1999, 286:1513-1517.
[11] 苏辉, 李志平, 段延敏, 等. 基于掺镁周期极化铌酸锂晶体的内腔单共振连续可调谐光参量振荡器[J]. 光学 精密工程, 2013, 21(6):1404-1409. SU H, LI ZH P, DUAN Y M, et al. Intra-cavity singly resonant optical parametric oscillator based on magnesium-doped periodically poled lithium niobate[J]. Opt. Precision Eng., 2013, 21(6):1404-1409.(in Chinese)
[12] RUSTAD G, NICOLAS S, LIPPERT E, et al. Tuning and dual wavelength operation of a ZGP OPO in the 8~11 micron range[J]. OSA Trends in Optics and Photonics, 2003:333-338.
[13] TANIUCHI T, OKADA S, NAKANISHI H. Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application[J]. J. Appl. Phys., 2004, 95(11):5984-5988.
[14] SUIZU K, NAWAHARA A, YAMASHITA T, et al. Random frequency accessible broad tunable THz-wave source using phase-matched DAST crystal DFG[J]. SPIE, 2006, 61030:61030A.
[15] YANG J F, LIU S D, HE J L, et al. Tunable simultaneous dual-wavelength laser at 1.9 and 1.7 μm based on KTiOAsO4 optical parametric oscillator[J]. Laser Phys. Lett., 2011, 8(1):28-31.
[16] JI F, LU R S, LI B S, et al. High-average-power, high-repetition-rate dual signal optical parametric oscillator based on PPMgLN[J]. Chin. Opt. Lett., 2010, 8(5):505-507.
[17] SUN J H, GALE B J, REID D T. Dual-color operation of a femtosecond optical parametric oscillator exhibiting stable relative carrier-envelope phase-slip frequencies[J]. Opt. Lett., 2006, 31(13):2021-2023.
[18] TARTARA L. Simple and versatile dual-signal wave optical parametric oscillator[J]. Opt. Lett., 2007, 32(9):1105-1107.
[19] ZHANG T L, YAO J Q, ZHU X Y, et al. Widely tunable, high-repetition-rate, dual signal-wave optical parametric oscillator by using two periodically poled crystals[J]. Opt. Commun., 2007, 272(1):111-115.
[20] SAMANTA G K, EBRAHIM-ZADEH M. Dual-wavelength, two-crystal, continuous-wave optical parametric oscillator[J]. Opt. Lett., 2011, 36(16):3033-3035.
[21] HEGENBARTH R, STEINMANN A, TOTH G, et al. Two-color femtosecond optical parametric oscillator with 1.7 W output pumped by a 7.4 W Yb:KGW laser[J]. J. Opt. Soc. Am. B, 2011, 28(5):1344-1352.
[22] XU L, ZHONG X, ZHU J F, et al. Efficient femtosecond optical parametric oscillator with dual-wavelength operation[J]. Opt. Lett., 2012, 37(9):1436-1438.
[23] MILTON M J T, GARDINER T D, MOLERO F, et al. Injection-seeded optical parametric oscillator for range-resolved DIAL measurements of atmospheric methane[J]. Opt. Commun., 1997, 142:153-160.
[24] GEIGER A R, DEGTIAREV E V, FARR W H, et al. Mid-infrared multiwavelength source for lidar applications[J]. SPIE, 1998, 3380:63-69.
[25] DEGTIAREV E V, GEIGER A R, RICHMOND R D. Compact dual wavelength 3.30-3.47-μm DIAL lidar[J]. SPIE, 2000, 4036:229-235.
[26] 叶全意, 杨春. 光子学太赫兹源研究进展[J]. 中国光学, 2013, 5(1):1-11. YE Q Y, YANG CH. Recent progress in THz sources based on photonics methods[J]. Chinese Optics, 2013, 5(1):1-11.(in Chinese)
[27] KAWASE K, HATANAKA T, TAKAHASHI H, et al. Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate[J]. Opt. Lett., 2000, 25(23):1714-1716.
[28] ZHANG T L, ZHU X Y, ZHAO P, et al. Widely tunable, dual-signal-wave optical parametric oscillator for terahertz generation by using two periodically poled crystals[C]. Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, Shanghai, China, 18-22 Sept.2006.
[29] WANG Z, SUN B, WANG Y Y, et al. Theoretical study of dual-wavelength PPKTP-OPO as a source of DFG THz-wave[C]. Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, Shanghai, China, 18-22 Sept.2006.
[30] ZHONG K, YAO J Q, XU D G, et al. Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO[J]. Opt. Commun., 2010, 283(18):3520-3524.
[31] XU D G, SHI W, ZHONG K, et al. The widely tunable THz generation in QPM-GaAs crystal pumped by a near-degenerate dual-wavelength KTP OPO at around 2.127μm[J]. SPIE, 2013, 8604:86040E.
[32] SCHAAR J E, VODOPYANOV K L, FEJER M M. Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs[J]. Opt. Lett., 2007, 32(10):1284-1286.
[33] 谭改娟, 谢冀江, 张来明, 等. 中红外激光技术最新进展[J]. 中国光学, 2013, 6(4):501-512. TAN G J, XIE J J, ZHANG L M, et al. Recent progress in mid-infrared laser technology[J]. Chinese Optics, 2013, 6(4):501-512.(in Chinese)
[34] ABEDIN K S, HAIDAR S, KONNO Y, et al. Difference frequency generation of 5~18 μm in a AgGaSe2 crystal[J]. Appl. Opt., 1998, 37(9):1642-1646.
[35] HAIDAR S, NAKAMURA K, NIWA E, et al. Mid-infrared 5~12 μm and limited 5.5~8.5 μm single-knob tuning generated by difference-frequency mixing in single-crystal AgGaS2[J]. Appl. Opt., 1999, 38(9):1798-1801.
[36] HEGENBARTH R, STEINMANN A, SARKISOV S, et al. Milliwatt-level mid-infrared(10.5~16.5 μm) difference frequency generation with a femtosecond dual-signal-wavelength optical parametric oscillator[J]. Opt. Lett., 2012, 37(17):3513-3515.