[1] BRUNING J. Optical lithography 40 years and holding[J]. SPIE,2007,6520:652004.
[2] 薛春荣,范正修,邵建达.真空紫外光学薄膜及薄膜材料[J].激光与光电子学进展,2008,45(1):57-64. XUE CH R,FAN ZH X,SHAO J D. Vaccum ultraviolet optical coatings and film materials[J]. Laser & Optoelectronics Progress,2008,45(1):57-64.(in Chinese)
[3] LINGG L,MACLEOD H. Exploring the crystalline microstructure of thin films using a series of lanthanide trifluorides as a probe[J]. Conference of Optical Interference Coatings,2001,TuE2:1-3.
[4] LINGG L. Lanthanide trifluoride thin films structure, composition, and optical structures[D]. Ann Arbur,USA:the University of Arizona,1990.
[5] CHENG-CHUNG L,MING-CHUNG L,MASAAKI K,et al.. Characterization of AlF3 thin films at 193 nm by thermal evaporation[J]. Appl. Opt.,2005,44(34):7333-7338.
[6] CHINDAUDOM P,VEDAM K. Determination of the optical constants of an inhomogeneous transparent LaF3 thin film on a transparent substrate by spectroscopic ellipsometry[J]. Opt. Lett.,1992,17(7):538-540.
[7] CHUN G,MINGDONG K,DAWEI L,et al.. Microstructure-related properties of magnesium fluoride films at 193 nm by oblique-angle deposition[J]. Opt. Express,2013,21(8):960-967.
[8] 姚汉民,胡松,刑廷文.光学投影曝光微纳加工技术[M].北京:北京工业大学出版社,2006. YAO H,HU S,XING T. Optical Projection Exposure Technology of Micro and Nano Fabrication[M]. Bejing:Beijing University of Technology Press,2006.(in Chinese)
[9] GEH B,RUOFF J,ZIEMMERMANN J,et al.. The impact of projection lens polarization properties on lithographic process at hyper-NA[J]. SPIE,2007,6520:65200F.
[10] KELKAR P,TIRRI B,WILKLOW R,et al.. Deposition and characterization of challenging DUV coatings[J]. SPIE,2008,7067:706708.
[11] YANGHUI L,WEIDONG S,YUEGUANG Z,et al.. Fabrication and measurement of low polarization anti-reflection coating at 248 nm[J]. Optik,2013,124(13):1441-1444.
[12] 廖延彪.偏振光学[M].北京:科学出版社,2003. LIAO Y B. Polarization Optics[M]. Bejing:Science Press,2003.(in Chinese)
[13] ARTEAGA O,FREUDENTHAL J,WANG B,et al.. Mueller matrix polarimetry with four photoelastic modulators:theory and calibration[J]. Appl. Opt.,2012,51(28):6805-6817.
[14] ZACZEK C,MULLENDER S,ENKISCH H,et al.. Coatings for next generation lithography[J]. SPIE,2008,7101:71010X.
[15] STENZEL O,WILBRANDT S,SCHURMANN,et al.. Tailored nanocomposite coatings for optics[J]. Conference of Optical Interference Coatings,2010,2010,MD2:1-3.
[16] CABFWNU J,SCHREIBER H,WANF J. Dense homogeneous fluoride films for DUV elements and method of preparing same:US Patent 8169705B2[R],2012.
[17] BAUER H,HELLER M,KAISER N. Optical coatings for UV photolithography systems[J]. SPIE,1996,2776:353-365.
[18] TAKI Y,WARANABE S,TANAKA A. Postfluorination of fluoride films for vacuum-ultraviolet lithography to improve their optical properties[J]. Appl. Opt.,2006,45(7):1380-1385.
[19] BISCHOFF M,SODE M,GABLER D,et al.. Metal fluoride coatings prepared by ion-assisted deposition[J]. SPIE,2008,7101:71010L.
[20] AIKO O. Ion beam sputtering of fluoride thin films for 193 nm applications[J]. Appl. Opt.,2014,53(4):A330-A333.
[21] YOSHIDA T,NISHIMOTO K,SEKINE K,et al.. Fluoride antireflection coatings for deep ultraviolet optics deposited by ion-beam sputtering[J]. Appl. Opt.,2006,45(7):1375-1379.
[22] IWAHORI,FURUTA,TAKI Y,et al.. Optical properties of fluoride thin films deposited by RF magnetron sputtering[J]. Appl. Opt.,2006,45(19):4598-4602.
[23] MURATA T,ISHIZAWA H,MOTOYAMA I,et al.. Preparation of high-performance optical coatings with fluoride nanoparticle films made from autoclaved sols[J]. Appl. Opt.,2006,46(7):1465-1468.
[24] MURATA T,HIEDA J,SAITO N,et al.. Preparation and wettability examinations of transparent SiO2 binder-added MgF2 nano-particle coatings covered with fluoro-alkylsilane self-assembled monolayer[J]. Appl. Opt.,2012,51(13):2298-2305.
[25] RUDISILL J. Design deposition process tradeoffs for high-performance optical coatings in the DUV spectral region[J]. SPIE,2004,5273:30-40.
[26] LICHAO Z,XIKUN C. High performance fluoride optical coatings for DUV optics[J]. SPIE,2014,9281:92810A.
[27] OTANI M,ITOH T,KUWABARA S,et al.. Optical coatings for the 157 nm full-field exposure tool FS1[J]. Conference of Optical Interference Coatings,2004,WF4:1-3.
[28] SPENCE P,KANOUFF M,CHAUDURI A. Film-stress-induced deformation of EUV reflective optics[J]. SPIE,1999,3676:724-734.
[29] 张立超,高劲松.基于遮挡矩阵的膜厚修正挡板的设计[J].光学精密工程,2013,21(11):2757-2763. ZHANG L CH,GAO J S. Design of uniformity correction masks based on shadow matrix[J]. Opt. Precision Eng.,2013,21(11):2757-2763.(in Chinese)
[30] CUNDING L,MINGDONG K,CHUN G,et al.. Theoretical design of shadowing masks for uniform coatings on spherical substrates in planetary rotation systems[J]. Opt. Express,2012,21(8):23790-23797.
[31] LICHAO Z,XIKUN C. Uniformity masks design method based on the shadow matrix for coating materials with different condensation characteristics[J]. 2013,2013,Article ID 160792:1-4.
[32] PIC N,MARTIN C,VITALIS M,et al.. Defectivity decrease in the photolithography process by AMC level reduction through implementation of novel fiteration and monitoring solutions[J]. SPIE,2010,7638:76380M.
[33] JUE W,MAIER R,DEWA P,et al., Nanoporous structure of a GdF3 thin film evaluated by variable angle spectroscopic ellipsometry[J]. Appl. Opt.,2007,46(16):3221-3226.
[34] BLOOMSTEIN,LIBERMANN V,ROTHSCHILD M,et al.. UV cleaning of contanminated 157-nm reticles[J]. SPIE,2001,4346:669-675.
[35] WELLS G,HERMANS J,WATSO R,et al.. Optical path and image performance monitoring of a full field 157 nm scanner[J]. SPIE,2004,5377:91-98.
[36] NAKASHIMA T,OHMURA Y,OGATA T,et al.. Thermal aberration control in projection lens[J]. SPIE,2008,6924:69241V.
[37] 武潇野,张立超,时光.应用于高性能光学薄膜表征的光声光热检测技术[J].中国光学,2014,7(5):701-711. WU X Y,ZHANG L CH,SHI G. Optical-thermal and optical-acoustics detecting techniques applied for the characterizations of high performance optical thin films[J]. Chinese Optics,2014,7(5):701-711.(in Chinese)
[38] WILLAMOWSKI U,RISTAU D,WELSCH E. Measuring the absolute absorptance of optical laser components[J]. Appl. Opt.,1998,37(36):8362-8370.
[39] BINCHENG L,MARTIN S,WELSCH E. Pulsed top-hat beam thermal lens measurement on ultraviolet dielectric coatings[J]. Opt. Lett.,1999,24(20):1398-1400.
[40] MUHLIG C,BUBLITZ,PAA W. Laser induced deflection(LID) method for absolute absorption measurements of optical materials and thin films[J]. SPIE,2011,8082:808225.
[41] SCHAFER B,GLOGER J,LEINHOS U,et al.. Photo-thermal measurement of absorptance losses, temperature induced wavefront deformation and compaction in DUV-optics[J]. Opt. Express,2009,25(17):23025-23036.
[42] LIBERMAN V,ROTHSCHILD M,SEDLACEK J,et al.. Marathon testing of optical materials for 193-nm lithographic applications[J]. SPIE,1999,3578:1-15.
[43] CHO B,DANIELEWICZ E,RUDISILL E. Absorption measurement of high-reflectance coated mirrors at 193 nm with a Shack Hartmann wave[J]. Opt. Eng.,2012,51(2):121803.
[44] NⅡSAKA S,WATANABE Y. Laser durability improvement of deep UV fluoride coatings[J]. SPIE,2008,7132:71320H.
[45] BLASCHKE H,RISTAU D,WELSCH E,et al.. Absolute measurements of nonlinear absorption near LIDT at 193 nm[J]. SPIE,2001,4347:447-453.
[46] MANN K,APEL O,ECKERT G,et al.. Testing of optical components for microlithography at 193 nm and 157 nm[J]. SPIE,2001,4346:1340-1348.
[47] 赵灵,武潇野,谷永强,等.激光量热法测量深紫外氟化物薄膜吸收[J].中国激光,2014,41(8):0807001. ZHAO L,WU X Y,GU Y Q,et al.. Measuring the absorptance of deep ultraviolet fluoride coatings with laser calorimetry[J]. Chinese J. Lasers,2014,41(8):0807001.(in Chinese)
[48] APEL O,MANN K,ZOLLER A,et al.. Nonlinear absorption of thin Al2O3 films at 193 nm[J]. Appl. Opt.,2000,39(18):3165-3169.
[49] APEL O,MANN K,MAROWSKY G. Nonlinear thickness dependence of two-photon absorptance in Al2O3 films[J]. Appl. Phys. A,2000,71:593-596.