[1] FERGUSON B, ZHANG X C. Materials for terahertz science and technology[J]. Nature Mater, 2002, 1:26-33. doi: 10.1038/nmat708
[2] SCHEMUTTENMAER C A. Exploring dynamics in the far-infrared with terahertz spectroscopy[J]. Chem. Rev., 2004, 104:1759-1779. doi: 10.1021/cr020685g
[3] HANGYO M, et al.. Terahertz time-domain spectroscopy of solids:a review[J]. International J. infrared and Millimeter Waves, 2006, 12:1661-1690. http://www.docin.com/p-1016688179.html
[4] TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photo., 2007, 1:97-105. doi: 10.1038/nphoton.2007.3
[5] 蔡禾, 郭雪娇, 和挺, 等.太赫兹技术及其应用研究进展[J].中国光学与应用光学, 2010, 3(3):209-222. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201003005.htm

CAI H, GUO X J, HE T, et al.. Terahertz wave and its new applications[J]. Chinese J. Optics and Applied Optics, 2010, 3(3):209-222.(in chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201003005.htm
[6] 许景周, 张希成.太赫兹科学技术和应用[M].北京:北京大学出版社, 2007.

XU J ZH, ZHANG X CH. Terahertz Science Technology and Applications[M]. Beijing:Peking University Press, 2007.
[7] LI Q, ZHANG X, CAO W, et al.. An approach for mechanically tunable, dynamic terahertz bandstop filters[J]. Applied Physics A, 2012, 107(2):285-291. https://www.researchgate.net/publication/256693257_An_approach_for_mechanically_tunable_dynamic_terahertz_bandstop_filters
[8] CHIANG Y J, YEN T J. A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission[J]. Applied Physics Letters, 2013, 102(1):011129. doi: 10.1063/1.4774300
[9] WEN X, ZHENG J. Broadband THz reflective polarization rotator by multiple plasmon resonances[J]. Optics Express, 2014, 22(23):28292-28300. doi: 10.1364/OE.22.028292
[10] 张检发, 袁晓东, 秦石乔.可调太赫兹与光学超材料[J].中国光学, 2014, 7(3):349-364. http://www.chineseoptics.net.cn/CN/abstract/abstract9144.shtml

ZHANG J F, YUAN X D, QIN SH Q. Tunable terahertz and optical metamaterials[J]. Chinese Optics, 2014, 7(3):349-364.(in chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9144.shtml
[11] ZHELUDEV NI, KIVSHAR Y S. From metamaterials to metadevices[J]. Nature Materials, 2012, 11(11):917-924. doi: 10.1038/nmat3431
[12] FU Y H, LIU A Q, ZHU W M, et al.. A Micromachined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators[J]. Advanced Functional Materials, 2011, 21(18):3589-3594. doi: 10.1002/adfm.201101087
[13] SU X, OUYANG C, XU N, et al.. Active metasurface terahertz deflector with phase discontinuities[J]. Optics Express, 2015, 23(21):27152-27158. doi: 10.1364/OE.23.027152
[14] SU X, OUYANG C, XU N, et al.. Broadband terahertz transparency in a switchable metasurface[J]. IEEE Photonics J., 2015, 7(1):1-8. http://www.docin.com/p-1467191395.html
[15] SENSALE-RODRIGUEZ B, FANG T, YAN R, et al.. Unique prospects for graphene-based terahertz modulators[J]. Applied Physics Letters, 2011, 99(11):113104. doi: 10.1063/1.3636435
[16] ZHANG Y, FENG Y, ZHU B, et al.. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency[J]. Optics Express, 2014, 22(19):22743-22752. doi: 10.1364/OE.22.022743
[17] ANDRYIEUSKI A, LAVRINENKO A V. Graphene metamaterials based tunable terahertz absorber:effective surface conductivity approach[J]. Optics Express, 2013, 21(7):9144-9155. doi: 10.1364/OE.21.009144
[18] ZHANG Y, TAN Y W, STORMER H L, et al.. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438(7065):201-204. doi: 10.1038/nature04235
[19] MAK K F, SFEIR M Y, WU Y, et al.. Measurement of the optical conductivity of graphene[J]. Physical Review Letters, 2008, 101(19):196405. doi: 10.1103/PhysRevLett.101.196405
[20] GEIM A K. Graphene:status and prospects[J]. Science, 2009, 324(5934):1530-1534. doi: 10.1126/science.1158877
[21] CHEN P Y, AL A. Terahertz metamaterial devices based on graphene nanostructures[J]. IEEE Transactions on Terahertz Science and Technology, 2013, 3(6):748-756. doi: 10.1109/TTHZ.2013.2285629
[22] SENSALE-RODRIGUEZ B, YAN R, RAFIQUE S, et al.. Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators[J]. Nano Letters, 2012, 12(9):4518-4522. doi: 10.1021/nl3016329
[23] SENSALE-RODRIGUEZ B, YAN R, KELLY M M, et al.. Broadband graphene terahertz modulators enabled by intraband transitions[J]. Nature Communications, 2012, 3:780. doi: 10.1038/ncomms1787
[24] WU Y, LAOVORAKIAT C, QIU X, et al.. Graphene Terahertz modulators by ionic liquid gating[J]. Advanced Materials, 2015, 27(11):1874-1879. doi: 10.1002/adma.v27.11
[25] KAKENOV N, TAKAN T, OZKAN V A, et al.. Graphene-enabled electrically controlled terahertz spatial light modulators[J]. Optics Letters, 2015, 40(9):1984-1987. doi: 10.1364/OL.40.001984
[26] DEGL'INNOCENTI R, JESSOP D S, SHAH Y D, et al.. Low-bias terahertz amplitude modulator based on split-ring resonators and graphene[J]. ACS Nano, 2014, 8(3):2548-2554. doi: 10.1021/nn406136c
[27] VALMORRA F, SCALARI G, MAISSEN C, et al.. Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial[J]. Nano Letters, 2013, 13(7):3193-3198. doi: 10.1021/nl4012547
[28] HE X, LI T, WANG L, et al.. Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene[J]. J. Applied Physics, 2014, 115(17):17B903. doi: 10.1063/1.4866079
[29] LEE S H, CHOI M, KIM T T, et al.. Switching terahertz waves with gate-controlled active graphene metamaterials[J]. Nature Materials, 2012, 11(11):936-941. doi: 10.1038/nmat3433
[30] GAO W, SHU J, REICHEL K, et al.. High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures[J]. Nano Letters, 2014, 14(3):1242-1248. doi: 10.1021/nl4041274
[31] HI S F, ZENG B, HAN H L, et al.. Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures[J]. Nano Letters, 2014, 15(1):372-377. https://www.researchgate.net/publication/269284684_Optimizing_Broadband_Terahertz_Modulation_with_Hybrid_GrapheneMetasurface_Structures
[32] CHEN C F, PARK C H, BOUDOURIS B W, et al.. Controlling inelastic light scattering quantum pathways in graphene[J]. Nature, 2011, 471(7340):617-620. doi: 10.1038/nature09866
[33] SHI S F, TANG T T, ZENG B, et al.. Controlling graphene ultrafast hot carrier response from metal-like to semiconductor-like by electrostatic gating[J]. Nano Letters, 2014, 14(3):1578-1582. doi: 10.1021/nl404826r
[34] LIANG G, HU X, YU X, et al.. Integrated Terahertz graphene modulator with 100% modulation depth[J]. ACS Photonics, 2015, 2(11):1559-1566. doi: 10.1021/acsphotonics.5b00317
[35] SHI F, CHEN Y, HAN P, et al.. Broadband, spectrally flat, graphene-based terahertz modulators[J]. Small, 2015, 11(45):6044-6050. doi: 10.1002/smll.201502036
[36] MAO Q, WEN Q Y, TIAN W, et al.. High-speed and broadband terahertz wave modulators based on large-area graphene field-effect transistors[J]. Optics Letters, 2014, 39(19):5649-5652. doi: 10.1364/OL.39.005649
[37] WEIS P, GARCIA-POMAR J L, HO H M, et al.. Spectrally wide-band terahertz wave modulator based on optically tuned graphene[J]. ACS Nano, 2012, 6(10):9118-9124. doi: 10.1021/nn303392s
[38] WEN Q Y, TIAN W, MAO Q, et al.. Graphene based all-optical spatial terahertz modulator[J]. Scientific Reports, 2014, 4. https://www.researchgate.net/profile/Weiwei_Liu27/publication/269415410_Graphene_based_All-Optical_Spatial_Terahertz_Modulator/links/54e3dbe00cf2dbf60694a657.pdf?inViewer=true&disableCoverPage=true&origin=publication_detail
[39] LI Q, TIAN Z, ZHANG X, et al.. Dual control of active graphene silicon hybrid metamaterial devices[J]. Carbon, 2015, 90:146-153. doi: 10.1016/j.carbon.2015.04.015
[40] LI Q, TIAN Z, ZHANG X, et al.. Active graphene-silicon hybrid diode for terahertz waves[J]. Nature Communications, 2015, 6. http://terahertz.tju.edu.cn/paper/paper114.pdf
[41] JIANG R, HAN Z, SUN W, et al.. Ferroelectric modulation of terahertz waves with graphene/ultrathin-Si:HfO2/Si structures[J]. Applied Physics Letters, 2015, 107(15):151105. doi: 10.1063/1.4933275
[42] LOW T, AVOURIS P. Graphene plasmonics for terahertz to mid-infrared applications[J]. ACS Nano, 2014, 8(2):1086-1101. doi: 10.1021/nn406627u
[43] YAN H, LOW T, ZHU W, et al.. Damping pathways of mid-infrared plasmons in graphene nanostructures[J]. Nature Photonics, 2013, 7(5):394-399. doi: 10.1038/nphoton.2013.57
[44] YAN H, LI X, CHANDRA B, et al.. Tunable infrared plasmonic devices using graphene/insulator stacks[J]. Nature Nanotechnology, 2012, 7(5):330-334. doi: 10.1038/nnano.2012.59
[45] JU L, GENG B, HORNG J, et al.. Graphene plasmonics for tunable terahertz metamaterials[J]. Nature Nanotechnology, 2011, 6(10):630-634. doi: 10.1038/nnano.2011.146
[46] LIU P Q, LUXMOORE I J, MIKHAILOV S A, et al.. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons[J]. Nature Communications, 2015, 6. https://www.researchgate.net/publication/271218382_Highly_tunable_hybrid_metamaterials_employing_split-ring_resonators_strongly_coupled_to_graphene_surface_plasmons?_sg=HNaDW7isyY04tlYM3chCmgZbYEL3sW1d5a7vYZooqP3KFgOn30GsFlTAT8RmgPRMJLOSnx-8A_5qEyYP91TChQ
[47] HU X, WANG J. High-speed gate-tunable terahertz coherent perfect absorption using a split-ring graphene[J]. Optics Letters, 2015, 40(23):5538-5541. doi: 10.1364/OL.40.005538
[48] FARAJI M, MORAVVEJ-FARSHI M K, YOUSEFI L. Tunable THz perfect absorber using graphene-based metamaterials[J]. Optics Communications, 2015, 355:352-355. doi: 10.1016/j.optcom.2015.06.050
[49] ZHU L, FAN Y, WU S, et al.. Electrical control of terahertz polarization by graphene microstructure[J]. Optics Communications, 2015, 346:120-123. doi: 10.1016/j.optcom.2015.02.032
[50] YANG K, LIU S, AREZOOMANDAN S, et al.. Graphene-based tunable metamaterial terahertz filters[J]. Applied Physics Letters, 2014, 105(9):093105. doi: 10.1063/1.4894807