[1] BORN M, WOLF E. Principles of Optics[M]. Cambridge University Press, 1999.
[2] AUGUSTIN T, BHENDE S, CHAVDA K, et al.. Scanning near-field optical microscopy with aperture probes:fundamentals and applications[J]. J. Chem. Phys., 2000, 112(18):7761-7774. doi: 10.1063/1.481382
[3] BARNES W L, DEREUX A, EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950):824-830. doi: 10.1038/nature01937
[4] PENDRY J B, HOLDEN A J, ROBBINS D J, et al.. Low frequency plasmons in thin-wire structures[J]. J. Phys. Condens. Matter, 1998, 10(22):4785-4809. doi: 10.1088/0953-8984/10/22/007
[5] 陈泳屹, 佟存柱, 秦莉, 等.表面等离子体激元纳米激光器技术及应用研究进展[J].中国光学, 2012, 5(5):453-463. http://www.chineseoptics.net.cn/CN/abstract/abstract8877.shtml

CHEN Y Y, TONG C ZH, QIN L, et al.. Progress in surface plasmon polariton nano-laser technologies and applications[J]. Chinese Optics, 2012, 5(5):453-463.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract8877.shtml
[6] 蔡浩原.高分辨率表面等离子体显微镜综述[J].中国光学, 2014(5):691-700. http://www.chineseoptics.net.cn/CN/abstract/abstract9180.shtml

CAI H Y. Review of high resolution surface plasmon microscopy[J]. Chinese Optics, 2014(5):691-700.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9180.shtml
[7] PENDRY J B. Negative refraction makes a perfect lens[J]. Phys. Rev. Lett., 2000, 85(18):3966-3969. doi: 10.1103/PhysRevLett.85.3966
[8] FANG N, LEE H, SUN C, et al.. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308:534-537. doi: 10.1126/science.1108759
[9] ZHANG X, LIU Z. Superlenses to overcome the diffraction limit[J]. Nat. Mater., 2008, 7(6):435-41. doi: 10.1038/nmat2141
[10] UENO K, TAKABATAKE S, NISHIJIMA Y, et al.. Nanogap-assisted surface plasmon nanolithography[J]. J. Phys. Chem. Lett., 2010, 1(3):657-662. doi: 10.1021/jz9002923
[11] PAN L, PARK Y, XIONG Y, et al.. Maskless plasmonic lithography at 22 nm resolution[J]. Sci. Rep., 2011, 1(11):116-120. https://www.researchgate.net/publication/221852473_Maskless_Plasmonic_Lithography_at_22_nm_Resolution
[12] GAO H, HYUN J K, LEE M H, et al.. Broadband plasmonic microlenses based on patches of nanoholes[J]. Nano Lett., 2010, 10(10):4111-4116. doi: 10.1021/nl1022892
[13] YU Y, CHASSAING D, SCHERER T, et al.. The focusing and talbot effect of periodic arrays of metallic nanoapertures in high-index medium[J]. Plasmonics, 2013, 8(2):723-732. doi: 10.1007/s11468-012-9463-0
[14] SHI H, WANG C, DU C, et al.. Beam manipulating by metallic nano-slits with variant widths[J]. Opt. Express, 2005, 13(18):6815-6820. doi: 10.1364/OPEX.13.006815
[15] VERSLEGERS L, CATRYSSE P B, YU Z, et al.. Planar lenses based on nanoscale slit arrays in a metallic film[J]. Nano Lett., 2009, 9(1):235-238. doi: 10.1021/nl802830y
[16] LIN L, GOH X M, MCGUINNESS L P, et al.. Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing[J]. Nano Lett., 2010, 10(5):1936-1940. doi: 10.1021/nl1009712
[17] YU Y, ZAPPE H. Effect of lens size on the focusing performance of plasmonic lenses and suggestions for the design[J]. Opt. Express, 2011, 19(10):9434-9444. doi: 10.1364/OE.19.009434
[18] YU Y, ZAPPE H. Theory and implementation of focal shift of plasmonic lenses[J]. Opt. Lett., 2012, 37(9):1592-1594. doi: 10.1364/OL.37.001592
[19] ZHANG Y, FU Y, LIU Y, et al.. Experimental study of metallic elliptical nano-pinhole structure-based plasmonic lenses[J]. Plasmonics, 2011, 6(2):219-226. doi: 10.1007/s11468-010-9191-2
[20] FU Y, LIU Y, ZHOU X, et al.. Experimental investigation of superfocusing of plasmonic lens with chirped circular nanoslits[J]. Opt. Express, 2010, 18(4):3438-3443. doi: 10.1364/OE.18.003438
[21] LIU Y, FU Y, ZHOU X, et al.. Experimental study of indirect phase tuning-based plasmonic structures for finely focusing[J]. Plasmonics, 2011, 6(2):227-233. doi: 10.1007/s11468-010-9192-1
[22] ZHU Y, YUAN W, YU Y, et al.. Metallic planar lens formed by coupled width-variable nanoslits for superfocusing[J]. Opt. Express, 2015, 23(15):20124-20131. doi: 10.1364/OE.23.020124
[23] 史林兴, 王莉, 李华, 等.表面等离子体激元透镜设计及其数值计算[J].光学精密工程, 2010, 18(3):831-835. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201003029.htm

SHI L X, WANG L, LI H, et al.. Design and numerical simulation of plasmon polariton nanolens[J]. Opt. Precision Eng., 2010, 18(4):831-835.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201003029.htm
[24] DURANT S, LIU Z, STEELE J M, et al.. Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit[J]. J. Opt. Soc. Am. B, 2006, 23(11):2383-2392. doi: 10.1364/JOSAB.23.002383
[25] LIU Z, DURANT S, LEE H, et al.. Far-field optical superlens[J]. Nano Lett., 2007, 7(2):403-408. doi: 10.1021/nl062635n
[26] SRITURAVANICH W, FANG N, SUN C, et al.. Plasmonic nanolithography[J]. Nano Lett., 2004, 4(6):1085-1088. doi: 10.1021/nl049573q
[27] MART NMORENO L, GARC AVIDAL F J, LEZEC H J, et al.. Theory of extraordinary optical transmission through subwavelength hole arrays[J]. Nature, 2001, 86(6):667-669. https://www.researchgate.net/publication/12152854_Theory_of_Extraordinary_Optical_Transmission_through_Subwavelength_Hole_Arrays
[28] WANG L, UPPULURI S M, JIN E X, et al.. Nanolithography using high transmission nanoscale bowtie apertures[J]. Nano Lett., 2006, 6(3):361-364. doi: 10.1021/nl052371p
[29] SUNDARAMURTHY A, SCHUCK P J, CONLEY N R, et al.. Toward nanometer-scale optical photolithography:utilizing the near-field of bowtie optical nanoantennas[J]. Nano Lett., 2006, 6(3):355-360. doi: 10.1021/nl052322c
[30] ZHU Y, YUAN W, YU Y, et al.. Robustly efficient superfocusing of immersion plasmonic lenses based on coupled nanoslits[J]. Plasmonics, 2016, DOI: 10.1007/s11468-016-0208-3.
[31] ZHU Y, YUAN W, YU Y, et al.. Exploring the superfocusing performance of plasmonic lenses formed by coupled nanoslits[J]. Micro Nano Lett., 2016, DOI: 10.1049/mnl.2016.0288.
[32] ROGERS E T, LINDBERG J, ROY T, et al.. A super-oscillatory lens optical microscope for subwavelength imaging[J]. Nat. Mater., 2012, 11(5):432-435. doi: 10.1038/nmat3280
[33] DIAO J, YUAN W, YU Y, et al.. Controllable design of super-oscillatory planar lenses for sub-diffraction-limit optical needles[J]. Opt. Express, 2016, 24(3):1924-1933. doi: 10.1364/OE.24.001924
[34] YU Y, WANG P, ZHU Y, et al.. Broadband metallic planar microlenses in an array:the focusing coupling effect[J]. Nanoscale Res. Lett., 2016, 11(1):1-10. doi: 10.1186/s11671-015-1209-4