[1] RADISIC V, LEONG K M K H, MEI X, et al.. Power amplification at 0.65 THz Using InP HEMTs[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(3):724-729. doi: 10.1109/TMTT.2011.2176503
[2] LEONG K M K H, MEI X, YOSHIDA W, et al.. A 0.85 THz low noise amplifier using InP HEMT transistors[J]. IEEE Microwave and Wireless Components Letters, 2015, 25(6):397-399. doi: 10.1109/LMWC.2015.2421336
[3] KOHLER R, TREDICUCCI A, BELTRAM F, et al.. Terahertz semiconductor-heterostructure laser[J]. Nature, 2002, 417(6885):156-159. doi: 10.1038/417156a
[4] WILLIAMS B S, KUMAR S, HU Q, et al.. High-power terahertz quantum-cascade lasers[J]. Electronics Letters, 2006, 42(2):89-91. doi: 10.1049/el:20063921
[5] LI L H, CHEN L, ZHU J X, et al.. Terahertz quantum cascade lasers with >1 W output powers[J]. Electronics Letters, 2014, 50(4):309-310. doi: 10.1049/el.2013.4035
[6] ALLEN S J, TSUI D C, LOGAN R A. Observation of the two-dimensional plasmon in silicon inversion layers[J]. Physical Review Letters, 1977, 38(17):980-983. doi: 10.1103/PhysRevLett.38.980
[7] GORNIK E, TSUI D C. Voltage-tunable far-infrared emission from Si inversion layers[J]. Physical Review Letters, 1976, 37(21):1425-1428. doi: 10.1103/PhysRevLett.37.1425
[8] HÖPFEL R A, VASS E, GORNIK E. Thermal excitation of two-dimensional plasma oscillations[J]. Physical Review Letters, 1982, 49(22):1667-1671. doi: 10.1103/PhysRevLett.49.1667
[9] HIRAKAWA K, YAMANAKA K, GRAYSON M, et al.. Far-infrared emission-spectroscopy of hot 2-dimensional plasmons in Al0.3Ga0.7As/GaAs heterojunctions[J]. Applied Physics Letters, 1995, 67(16):2326-2328. doi: 10.1063/1.114333
[10] KEMPA K, BAKSHI P, XIE H, et al.. Current-driven plasma instabilities in solid-state layered systems with a grating[J]. Physical Review B, 1993, 47(8):4532-4536. doi: 10.1103/PhysRevB.47.4532
[11] MIKHAILOV S A. Plasma instability and amplification of electromagnetic waves in low-dimensional electron systems[J]. Physical Review B, 1998, 58(3):1517-1532. doi: 10.1103/PhysRevB.58.1517
[12] DYAKONOV M, SHUR M. Shallow-water analogy for a ballistic field-effect transistor:new mechanism of plasma-wave generation by Dc current[J]. Physical Review Letters, 1993, 71(15):2465-2468. doi: 10.1103/PhysRevLett.71.2465
[13] BOUBANGA-TOMBET S, TEPPE F, TORRES J, et al.. Room temperature coherent and voltage tunable terahertz emission from nanometer-sized field effect transistors[J]. Applied Physics Letters, 2010, 97(26):262108. doi: 10.1063/1.3529464
[14] LISAUSKAS A, PFEIFFER U, OJEFORS E, et al.. Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors[J]. J. Applied Physics, 2009, 105(11):114511. doi: 10.1063/1.3140611
[15] KNAP W, DENG Y, RUMYANTSEV S, et al.. Resonant detection of subterahertz radiation by plasma waves in a submicron field-effect transistor[J]. Applied Physics Letters, 2002, 80(18):3433-3435. doi: 10.1063/1.1473685
[16] KNAP W, KACHOROVSKⅡ V, DENG Y, et al. Nonresonant detection of terahertz radiation in field effect transistors[J]. J. Applied Physics, 2002, 91(11):9346-9353. doi: 10.1063/1.1468257
[17] DYAKONOV M I, SHUR M S. Plasma wave electronics:novel terahertz devices using two dimensional electron fluid[J]. IEEE Transactions on Electron Devices, 1996, 43(10):1640-1645. doi: 10.1109/16.536809
[18] ELKHATIB T A, KACHOROVSKⅡ V Y, STILLMAN W J, et al. Terahertz response of field-effect transistors in saturation regime[J]. Applied Physics Letters, 2011, 98(24):243505. doi: 10.1063/1.3584137
[19] GUTIN A, KACHOROVSKⅡ V, MURAVIEV A, et al.. Plasmonic terahertz detector response at high intensities[J]. J. Applied Physics, 2012, 112(1):014508. doi: 10.1063/1.4732138
[20] KNAP W, DYAKONOV M, COQUILLAT D, et al.. Field effect transistors for terahertz detection:physics and first imaging applications[J]. J. Infrared Millimeter and Terahertz Waves, 2009, 30(12):1319-1337.
[21] KACHOROVSKⅡ V Y, RUMYANTSEV S L, KNAP W, et al.. Performance limits for field effect transistors as terahertz detectors[J]. Applied Physics Letters, 2013, 102(22):223505. doi: 10.1063/1.4809672
[22] SHUR M. Terahertz electronics for sensing applications[C]. Sensors, IEEE, Limerick, Ireland, 2011:40-43.
[23] PREU S, LU H, SHERWINM S, et al.. Detection of nanosecond-scale, high power THz pulses with a field effect transistor[J]. Review of Scientific Instruments, 2012, 83(5):053101. doi: 10.1063/1.4705986
[24] BUT D B, DREXLER C, SAKHNO M V, et al.. Nonlinear photoresponse of field effect transistors terahertz detectors at high irradiation intensities[J]. J. Applied Physics, 2014, 115(16):164514. doi: 10.1063/1.4872031
[25] DYAKONOVA N, BUT D B, COQUILLAT D, et al.. AlGaN/GaN HEMT's photoresponse to high intensity THz radiation[J]. Opto-Electronics Review, 2015, 23(3):195-199.
[26] STILLMAN W J, SHUR M S. Closing the gap:plasma wave electronic terahertz detectors[J]. J. Nanoelectronics and Optoelectronics, 2007, 2(3):209-221. doi: 10.1166/jno.2007.301
[27] LU J Q, SHUR M S, HESLER J L, et al.. Terahertz detector utilizing two-dimensional electronic fluid[J]. IEEE Electron Device Letters, 1998, 19(10):373-375. doi: 10.1109/55.720190
[28] WEIKLE R, LU J Q, SHUR M S, et al.. Detection of microwave radiation by electronic fluid in high electron mobility transistors[J]. Electronics Letters, 1996, 32(23):2148-2149. doi: 10.1049/el:19961410
[29] KNAP W, DENG Y, RUMYANTSEV S, et al.. Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors[J]. Applied Physics Letters, 2002, 81(24):4637-4639. doi: 10.1063/1.1525851
[30] KANG S, BURKE P J, PFEIFFER L N, et al.. Resonant frequency response of plasma wave detectors[J]. Applied Physics Letters, 2006, 89(21):213512. doi: 10.1063/1.2393023
[31] EL FATIMY A, TEPPE F, DYAKONOVA N, et al.. Resonant and voltage-tunable terahertz detection in InGaAs/InP nanometer transistors[J]. Applied Physics Letters, 2006, 89(13):131926. doi: 10.1063/1.2358816
[32] PERALTA X G, ALLEN S J, WANKE M C, et al.. Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors[J]. Applied Physics Letters, 2002, 81(9):1627-1629. doi: 10.1063/1.1497433
[33] EL FATIMY A, TOMBET S B, TEPPE F, et al.. Terahertz detection by GaN/AlGaN transistors[J]. Electronics Letters, 2006, 42(23):1342-1344. doi: 10.1049/el:20062452
[34] GOLENKOV A. Sub-THz nonresonant detection in AlGaN/GaN heterojunction FETs[J]. Semiconductor Physics, Quantum Electronics & Optoelectronics, 2015, 18(1):40-45.
[35] LISAUSKAS A, BOPPEL S, SELIUTA D, et al.. Terahertz detection and coherent imaging from 0.2 to 4.3 THz with silicon CMOS field-effect transistors[C]. Microwave Symposium Digest (MTT), IEEE MTT-S International, Montreal, Canada, 2012:1-3.
[36] BOPPEL S, LISAUSKAS A, MAX A, et al.. CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging[J]. Optics Letters, 2012, 37(4):536-538. doi: 10.1364/OL.37.000536
[37] BOPPEL S, LISAUSKAS A, MUNDT M, et al.. CMOS integrated antenna-coupled field-effect transistors for the detection of radiation from 0.2 to 4.3 THz[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(12):3834-3843. doi: 10.1109/TMTT.2012.2221732
[38] PERENZONI D, PERENZONI M, GONZO L, et al.. Analysis and design of a CMOS-based terahertz sensor and readout[C]. Proceedings of SPIE, Optical Sensing and Detection, Brussels, Belgium, 2010, 7726:772618.
[39] BAUER M, VENCKEVICIUS R, KASALYNAS I, et al.. Antenna-coupled field-effect transistors for multi-spectral terahertz imaging up to 4.25 THz[J]. Optics Express, 2014, 22(16):19250-19256.
[40] AL HADI R, SHERRY H, GRZYB J, et al.. A 1 k-Pixel Video Camera for 0.7-1.1 Terahertz Imaging Applications in 65-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2012, 47(12):2999-3012. doi: 10.1109/JSSC.2012.2217851
[41] SHERRY H, AL HADI R, GRZYB J, et al.. Lens-integrated THz imaging arrays in 65nm CMOS technologies[C]. Radio Frequency Integrated Circuits Symposium (RFIC), IEEE, Baltimore, MD, USA, 2011:1-4.
[42] TOMADIN A, TREDICUCCI A, PELLEGRINI V, et al.. Photocurrent-based detection of terahertz radiation in graphene[J]. Applied Physics Letters, 2013, 103(21):211120. doi: 10.1063/1.4831682
[43] OTSUJI T, TOMBET S A B, SATOU A, et al.. Graphene-based devices in terahertz science and technology[J]. J. Physics D:Applied Physics, 2012, 45(30):303001. doi: 10.1088/0022-3727/45/30/303001
[44] VICARELLI L, VITIELLO M S, COQUILLAT D, et al.. Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nature Materials, 2012, 11(10):865-871. doi: 10.1038/nmat3417
[45] YANG X X, SUN J D, QIN H, et al.. Room-temperature terahertz detection based on CVD graphene transistor[J]. Chinese Physics B, 2015, 24(4):047206. doi: 10.1088/1674-1056/24/4/047206
[46] ZAK A, ANDERSSON M A, BAUER M, et al.. Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene[J]. Nano Letters, 2014, 14(10):5834-5838. doi: 10.1021/nl5027309
[47] NAKAMURA S, MUKAI T, SENOH M. High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes[J]. J. Applied Physics, 1994, 76(12):8189-8191. doi: 10.1063/1.357872
[48] NAKAMURA S, SENOH N, IWASA N, et al.. High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures[J]. Japanese J. Applied Physics, 1995, 34(7A):L797-L799.
[49] AMBACHER O. Growth and applications of Group Ⅲ-nitrides[J]. J. Physics D:Applied Physics, 1998, 31(20):2653-2710. doi: 10.1088/0022-3727/31/20/001
[50] QIN H, YU Y, LI X, et al.. Excitation of terahertz plasmon in two-dimensional electron gas[J]. Terahertz Science and Technology, 2016, 9(2):71-81.
[51] TAN R B.Theoretical study on two-dimensional electron gas based terahertz device[D]. Beijing:University of Chinese Academy of Sciences 2013.(in Chinese)
[52] STERN F. Polarizability of a two-dimensional electron gas[J]. Physical Review Letters, 1967, 18(14):546-548. doi: 10.1103/PhysRevLett.18.546
[53] CHAPLIK A V. Possible crystallization of charge carriers in low-density inversion layers[J]. Soviet J. Experimental and Theoretical Physics, 1972, 35(2):395-398.
[54] SHUR M. Plasma wave terahertz electronics[J]. Electronics Letters, 2010, 46(26):S18-S21. doi: 10.1049/el.2010.8457
[55] SHANER E A, GRINE A D, WANKE M C, et al.. Far-infrared spectrum analysis using plasmon modes in a quantum-well transistor[J]. IEEE Photonics Technology Letters, 2006, 18(17-20):1925-1927.
[56] SUN J D, SUN Y F, WU D M, et al. High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor[J]. Applied Physics Letters, 2012, 100(1):013506. doi: 10.1063/1.3673617
[57] DYER G C, VINH N Q, ALLEN S J, et al.. A terahertz plasmon cavity detector[J]. Applied Physics Letters, 2010, 97(19):193507. doi: 10.1063/1.3513339
[58] AIZIN G R, DYER G C. Transmission line theory of collective plasma excitations in periodic two-dimensional electron systems:Finite plasmonic crystals and Tamm states[J]. Physical Review B, 2012, 86(23):235316. doi: 10.1103/PhysRevB.86.235316
[59] HUANG Y D.Manipulation of the interaction between two-dimensional plasma waves and terahertz electromagnetic waves[D]. Beijing:University of Chinese Academy of Sciences, 2013.(in Chinese)
[60] SUN J D, QIN H, LEWIS R A, et al. Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector[J]. Applied Physics Letters, 2012, 100(17):173513. doi: 10.1063/1.4705306
[61] SUN J D, QIN H, LEWIS R A, et al.. The effect of symmetry on resonant and nonresonant photoresponses in a field-effect terahertz detector[J]. Applied Physics Letters, 2015, 106(3):031119. doi: 10.1063/1.4906536
[62] TEPPE F, KNAP W, VEKSLER D, et al.. Room-temperature plasma waves resonant detection of sub-terahertz radiation by nanometer field-effect transistor[J]. Applied Physics Letters, 2005, 87(5):052107. doi: 10.1063/1.2005394
[63] TEPPE F, VEKSLER D, KACHOROVSKI V Y, et al. Plasma wave resonant detection of femtosecond pulsed terahertz radiation by a nanometer field-effect transistor[J]. Applied Physics Letters, 2005, 87(2):022102. doi: 10.1063/1.1952578
[64] SUN Y F, SUN J D, ZHOU Y, et al.. Room temperature GaN/AlGaN self-mixing terahertz detector enhanced by resonant antennas[J]. Applied Physics Letters, 2011, 98(25):252103. doi: 10.1063/1.3601489
[65] LIU L, HESLER J L, XU H Y, et al.. A broadband quasi-optical terahertz detector utilizing a zero bias schottky diode[J]. IEEE Microwave and Wireless Components Letters, 2010, 20(9):504-506. doi: 10.1109/LMWC.2010.2055553
[66] SEMENOV A D, RICHTER H, HUBERS H W, et al. Terahertz performance of integrated lens antennas with a hot-electron bolometer[J]. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(2):239-247. doi: 10.1109/TMTT.2006.889153
[67] DYER G C, PREU S, AIZIN G R, et al.. Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity[J]. Applied Physics Letters, 2012, 100(8):083506. doi: 10.1063/1.3687698
[68] 李琦, 胡佳琦, 杨永发.太赫兹Gabor同轴数字全息二维再现像复原[J].光学精密工程, 2014, 22(8):2188-2195. doi: 10.3788/OPE.

LI Q, HU J Q, YANG Y F. 2D reconstructed-image restoration of terahertz Gabor in-line digital holography[J]. Opt. Precision Eng., 2014, 22(8):2188-2195.(in Chinese) doi: 10.3788/OPE.
[69] 田莉, 金伟其, 蔡毅, 等.THz焦平面连续波透射成像系统的成像面积及对比度[J].光学精密工程, 2015, 23(8):2164-2170. doi: 10.3788/OPE.

TIAN L, JIN W Q, CAI Y, et al.. Imaging area and contrast of THz focal plan array CW transmission imaging system[J]. Opt. Precision Eng., 2015, 23(8):2164-2170.(in Chinese) doi: 10.3788/OPE.