[1] US Army. Panoramic television viewing system:America, US, 3505465 A[P].1970-04-07.
[2] YAMAZAWA K, YAGI Y, YACHIDA M. Omnidirectional imaging with hyperboloidal projection[C]. 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 1993:1029-1034.
[3] PEGARD C, MOUADDIB E M. A mobile robot using a panorama view[C]. IEEE International Conference on Robotics and Automation, IEEE, 1996:89-94.
[4] NAYAR S K. Catadioptric omnidirectional camera[C]. IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 1997:482-488.
[5] CHAHL J S, SRINIVASAN M V. Reflective surfaces for panoramic imaging[J]. Applied Optics, 1997, 36(31):8275-8285. doi: 10.1364/AO.36.008275
[6] CONROY T, MOORE J T. Resolution invariant surfaces for panoramic vision systems[C]. 7th IEEE International Conference on Computer Vision, IEEE, 1999:392.
[7] HICKS R A, BAJCSY R. Reflective surfaces as computational sensors[J]. Image and Vision Computing, 1999, 19(11):773-777.
[8] GACHTER S. Mirror design for an omnidirectional camera with a uniform cylindrical projection when using the SVAVISCA sensor[R]. Research reports of CMP, OMNIVIEWS Project, Czech Technical University in Prague, 2001.
[9] BAKER S, NAYAR S K. A theory of catadioptric image formation[C]. 6th IEEE International Conference on Computer Vision, IEEE, 1998:35-42.
[10] BAKER S, NAYAR S K. A theory of single-viewpoint catadioptric image formation[J]. Int. J. Comput. Vis., 1999, 35(2):175-196. doi: 10.1023/A:1008128724364
[11] 贺宇, 王岭雪, 周星光, 等.单视点红外折反射全向成像系统参数设计[J].光学学报, 2016, 36(1):0111002. http://youxian.cnki.com.cn/yxdetail.aspx?filename=ZGGA201710014&dbname=CJFDPREP

HE Y, WANG L X, ZHOU X G, et al.. Parameters design for single viewpoint infrared omnidirectional view sensors[J]. Acta Optica Sinica, 2016, 36(1):0111002.(in Chinese) http://youxian.cnki.com.cn/yxdetail.aspx?filename=ZGGA201710014&dbname=CJFDPREP
[12] NAGAHARA H, YOSHIDA K, YACHIDA M. An omnidirectional vision sensor with single view and constant resolution[C]. IEEE International Conference on Computer Vision, IEEE, 2007:1-8.
[13] HICKS R A, MILLSTONE M, DANⅡLIDⅡS K. Realizing any central projection with a mirror pair[J]. Applied Optics, 2006, 45(28):7205-7210. doi: 10.1364/AO.45.007205
[14] STURZL W, SRINIVASAN M V. Omnidirectional imaging system with constant elevational gain and single viewpoint[C]. 10th Workshop on Omnidirectional Vision, CameraNetworks and Non-classical Cameras, Zaragoa, Spain, 2010:1-7.
[15] SWAMINATHAN R, GROSSBERG M D, NAYAR S K. Non-single viewpoint catadioptric cameras:geometry and analysis[J]. Int. J. Comput. Vis., 2006, 66(3):211-229. doi: 10.1007/s11263-005-3220-1
[16] SWAMINATHAN R, GROSSBERG M D, NAYAR S K. Caustics of catadioptric cameras[C]. IEEE International Conference on Computer Vision, IEEE, 2001:2-9.
[17] SWAMINATHAN R, GROSSBERG M D, NAYAR S K. A perspective on distortions[C]. IEEE Computer Vision and Pattern Recognition, IEEE, 2003:594-601.
[18] YU J Y, MCMILLAN L. Modelling reflections via multiperspective imaging[J]. IEEE Computer Vision and Pattern Recognition, 2005, 1:117-124.
[19] YU J Y, MCMILLAN L. General linear cameras[C]. 8th European. Conf. on Computer vision(ECCV 2004), Prague, Czech, 2004:14-27.
[20] GEYER C, DANⅡLIDIS K. A unifying theory for central panoramic systems and practical applications[C]. 6th European. Conf. on Computer vision(ECCV 2000), Antibes, France, 2000:445-461.
[21] GEYER C, DANⅡLIDIS K. Mirrors in motion:Epipolar geometry and motion estimation[J]. Int. J. Comput. Vis., 2003, 2:766-773.
[22] GEYER C M. Catadioptric projective geometry:theory and applications[D]. Philadelphia:University of Pennsylvania, 2003.
[23] ALIAGA D G. Accurate catadioptric calibration for real-time pose estimation in room-size environments[C]. 8th IEEE International Conference on Computer Vision, IEEE, 2001:127-134.
[24] PUIG L, BASTANLAR Y, STURM P, et al.. Calibration of central catadioptric cameras using a dlt-like approach[J]. Int. J. Comput. Vis., 2011, 93(1):101-114. doi: 10.1007/s11263-010-0411-1
[25] THIRTHALA S R, POLLEFEYS M. Radial multi-focal tensors[J]. Int. J. Comput. Vis., 2012, 96(2):195-211. doi: 10.1007/s11263-011-0463-x
[26] WU Y H, HU Z Y. Geometric invariants and applications under catadioptric camera model[C]. IEEE International Conference on Computer Vision, IEEE, 2005:1547-1554.
[27] GEYER C, DANⅡLIDIS K. Paracatadioptric camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5):687-695. doi: 10.1109/34.1000241
[28] VANDEPORTAELE B, CATTOEN M, MARTHON P, et al. A new linear calibration method for paracatadioptric cameras[C]. 18th IEEE International Conference on Pattern Recognition, IEEE, 2006:647-651.
[29] VASSEUR P, MOUADDIB E M. Central catadioptric line detection[C]. In British Machine Vision Conference, London, UK, 2004:doi:10.52441C,18.8.
[30] CAGLIOTI V, TADDEI P, BORACCH I, et al.. Singleimage calibration of off-axis catadioptric cameras using lines[C]. 11th IEEE International Conference on Computer Vision, IEEE, 2007:1-6.
[31] YING X H, HU Z Y. Catadioptric camera calibration using geometric invariants[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(10):1260-1271. doi: 10.1109/TPAMI.2004.79
[32] WU Y H, LI Y F, HU Z Y. Easy calibration for para-catadioptric-like camera[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2006:5719-5724.
[33] YING X H, ZHA H B. Simultaneously calibrating catadioptric camera and detecting line features using hough transform[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2005:412-417.
[34] YING X H, ZHA H B. Identical projective geometric properties of central catadioptric line images and sphere images with applications to calibration[J]. Int. J. Comput. Vis., 2008, 78(1):89-105. doi: 10.1007/s11263-007-0082-8
[35] WU F C, DUAN F Q, HU Z Y, et al. A new linear algorithm for calibrating central catadioptric cameras[J]. Pattern Recognition, 2008, 41(10):3166-3172. doi: 10.1016/j.patcog.2008.03.010
[36] SCARAMUZZA D, MARTINELLI A, SIEGWART R. A flexible technique for accurate omnidirectional camera calibration and structure from motion[C]. IEEE International Conference on Computer Vision Systems, IEEE, 2006:45.
[37] MEI C, RIVES P. Single view point omnidirectional camera calibration from planar grids[C]. IEEE International Conference on Robotics and Automation, IEEE, 2007:3945-3950.
[38] GASPARINI S, STURM P, BARRETO J P. Plane-based calibration of central catadioptric cameras[C]. 12th IEEE International Conference on Computer Vision, IEEE, 2009:1195-1202.
[39] DENG X M, WU F C, WU Y H. An easy calibration method for central catadioptric cameras[J]. Acta Automatica Sinica, 2007, 33(8):801-808. doi: 10.1360/aas-007-0801
[40] KANG S B. Catadioptric self-calibration[C]. IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2000:201-207.
[41] RAMALINGAM S, STURM P, LODHA S K. Generic self-calibration of central cameras[J]. Computer Vision and Image Understanding, 2010, 114(2):210-219. doi: 10.1016/j.cviu.2009.07.007
[42] ESPUNY F, BURGOS GIL J I. Generic self-calibration of central cameras from two rotational ows[J]. Int. J. Comput. Vis., 2011, 91(2):131-145. doi: 10.1007/s11263-010-0335-9
[43] GASPAR J, SANTOS-VICTOR J. Visual path following with a catadioptric panoramic camera[C]. International Symposium on Intelligent Robotic Systems, IEEE, 1999:139-147.
[44] J.MAYBANK S, IENG S, BENOSMAN R. A fisher-rao metric for paracatadioptric images of lines[J]. Int. J. Comput. Vis., 2012, 99(2):147-165. doi: 10.1007/s11263-012-0523-x
[45] TANG Y Z, LI Y F, LUO J. Parametric distortion-adaptive neighborhood for omnidirectional camera[J]. Applied Optics, 2015, 54(23):6969-6978. doi: 10.1364/AO.54.006969
[46] 曾吉勇, 苏显渝.水平场景无畸变折反射周视成像系统透镜畸变的消除[J].光学学报, 2004, 24(6):730-734. http://youxian.cnki.com.cn/yxdetail.aspx?filename=ZGGA201710014&dbname=CJFDPREP

ZENG J Y, SU X Y. Elimination of the lens distortion in catadioptric omnidirectional distortionless imaging system for horizontal scene[J]. Acta Optica Sinica, 2004, 24(6):730-734.(in Chinese) http://youxian.cnki.com.cn/yxdetail.aspx?filename=ZGGA201710014&dbname=CJFDPREP
[47] 肖潇, 杨国光, 白剑.基于球面透视投影约束的周视环形透镜畸变校正[J].光学学报, 2008, 28(4):675-680. http://youxian.cnki.com.cn/yxdetail.aspx?filename=ZGGA201710014&dbname=CJFDPREP

XIAO X, YANG G G, BAI J. Panoramic-Annular-Lens distortion correction based on spherical perspective projection constraint[J]. Acta Optica Sinica, 2008, 28(4):675-680.(in Chinese) http://youxian.cnki.com.cn/yxdetail.aspx?filename=ZGGA201710014&dbname=CJFDPREP
[48] WU Y H, HU Z Y, LI Y F. Radial distortion invariants and lens evaluation under a single-optical-axis omnidirectional camera[J]. Computer Vision and Image Understanding, 2014, 126(2):11-27. http://dl.acm.org/citation.cfm?id=3030862
[49] SWAMINATHAN R. Focus in catadioptric imaging systems[C]. IEEE 11th International Conference on Computer Vision, IEEE, 2007:1-7.
[50] LI W M, LI Y F. An analytical solution to optimal focal distance in catadioptric imaging systems[C]. IEEE International Conference on Robotics and Automation, IEEE, 2011:6300-6305.
[51] LI W M, LI Y F. Overall well-focused catadioptric image acquisition with multifocal images:a model-based method[J]. IEEE Transactions on Image Processing, 2012, 21(8):3697-3706. doi: 10.1109/TIP.2012.2195010
[52] 李永乐, 张茂军, 娄静涛, 等.去散焦模糊的折反射全向成像系统设计[J].光学学报, 2012, 32(9):0911001. http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201209013.htm

LI Y L, ZHANG M J, LOU J T, et al.. Design of catadioptric omnidirectional imaging system for defocus deblurring[J]. Acta Optica Sinica, 2012, 32(9):0911001.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201209013.htm
[53] LIU Y, LI H F, LI Y L, et al. Coded aperture enhanced catadioptric optical system for omnidirectional image deblurring[J]. Optik, 2014, 125(1):11-17. doi: 10.1016/j.ijleo.2013.05.146
[54] LI Y L, LOU J T, XU Y C. Defocus deblurring for catadioptric omnidirectional imaging based on coded aperture and omni-total variation[J]. Advanced Robotics, 2015, 29(16):1-13.
[55] LIU Y, LI Y L, LOU J T, et al.. Omni-total variation algorithm for the restoration of all-focused catadioptric image[J]. Optik, 2014, 125(14):3685-3689. doi: 10.1016/j.ijleo.2014.01.068
[56] 白瑜, 廖志远, 廖胜, 等.共孔径消热差红外双波段光学系统[J].光学精密工程, 2016, 24(2):268-277. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZXGH201507003068.htm

BAI Y, LIAO Z Y, LIAO SH, et al.. Infrared dual band a thermal optical system with common aperture[J]. Opt. Precision Eng., 2016, 24(2):268-277.(in Chinese) http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZXGH201507003068.htm
[57] WILLETT R M, MARCIA R F, NICHOLS J M. Compressed sensing for practical optical imaging systems:a tutorial[J]. Optical Engineering, 2011, 50(7):072601. doi: 10.1117/1.3596602
[58] ABURMAD S. Panoramic thermal imaging:challenges and tradeoffs[J]. SPIE, 2014, 9070:90700W. http://adsabs.harvard.edu/abs/2014SPIE.9070E..0EA
[59] NICHOLS J M, WATERMAN J R, BAYYA S, et al.. Influence of spinel head window thickness on the performance characteristics of a submarine, panoramic, infrared imaging system[J]. SPIE, 2011, 8012:90122C. doi: 10.1117/12.884521.full
[60] NICHOLS J M, WATERMAN J R, MENON R, et al.. Modeling and analysis of a high-performance midwave infrared panoramic periscope[J]. Optical Engineering, 2010, 49(11):113202. doi: 10.1117/1.3505866
[61] FURXHI O, DRIGGERS R G, HOLST G, et al.. Performance analysis of panoramic infrared systems[J]. SPIE, 2014, 9071:907112. doi: 10.1117/12.2067671.full
[62] TANG Y Z, LI Y F. Contour coding based rotating adaptive model for human detection and tracking in thermal catadioptric omnidirectional vision[J]. Applied Optics, 2012, 51(27):6641-6652. doi: 10.1364/AO.51.006641
[63] TANG Y Z, LI Y F, BAI T X, et al.. Rotating adaptive Haar wavelet transform for human tracking in thermal omnidirectional vision[C]. IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, IEEE, 2012:324-329.
[64] TANG Y Z, LUO J, LI Y F, et al.. Rotational kinematics model based adaptive particle filter for robust human tracking in thermal omnidirectional vision[J]. Mathematical Problems in Engineering, 2015:347497.
[65] TANG Y Z, LI Y F, BAI T X, et al.. A rotating adaptive model for human tracking in thermal catadioptric omnidirectional vision[C]. IEEE International Conference on Robotics and Biomimetics, IEEE, 2011:2435-2440.
[66] RemoteReality. Strix360 camera system[EB/OL].[2015-01-11].http://www.remotereality.com.
[67] BJORK C, WAN W. Mid-wave infrared(MWIR) panoramic sensor for various applications[J]. SPIE, 2010, 7660:76600B.
[68] 周星光, 贺宇, 王岭雪, 等.单视点双曲面折反射红外全景成像系统设计与分析[J].红外与激光工程, 2016, 45(9):197-205. http://youxian.cnki.com.cn/yxdetail.aspx?filename=ZGGA201710014&dbname=CJFDPREP

ZHOU X G, HE Y, WANG L X, et al.. Hyperbolicsingle-viewpoint infrared catadioptric panoramic imaging system[J]. Infrared and Laser Engineering, 2016, 45(9):197-205.(in Chinese) http://youxian.cnki.com.cn/yxdetail.aspx?filename=ZGGA201710014&dbname=CJFDPREP
[69] 贺宇, 王岭雪, 蔡毅, 等.恒等探测距离折反射周视红外成像系统设计及分析[J].光学学报, 2017, 37(4):0422002. http://youxian.cnki.com.cn/yxdetail.aspx?filename=ZGGA201710014&dbname=CJFDPREP

HE Y, WANG L X, CAI Y, et al.. Design and analysis for catadioptric omnidirectional view Infrared imaging system with constant detection range[J]. Acta Optica Sinica, 2017, 37(4):0422002.(in Chinese) http://youxian.cnki.com.cn/yxdetail.aspx?filename=ZGGA201710014&dbname=CJFDPREP
[70] SCHARSTEIN D, SZELISKI R. http://vision.middlebury.edu/stereo/eval/[EB/OL].[2016-07-06].
[71] SCHARSTEIN D, SZELISKI R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. Int. J. Comput. Vis., 2002, 47(1):7-42. doi: 10.1023/A:1014573219977
[72] HIRSCHMULLER H. Stereo vision in structured environments by consistent semi-global matching[C]. 21rd IEEE Conference on Computer Vision and Pattern Recognition(CVPR), IEEE, 2006:2386-2393.
[73] TOMBARI F, MATTOCCIA S, STEFANO L D, et al.. Near real-time stereo based on effective cost aggregation[C]. 22rd IEEE Conference on Computer Vision and Pattern Recognition(CVPR), IEEE, 2008:1-4.
[74] MATTOCCIA S, GIARDINO S, GAMBINI A. Accurate and efficient cost aggregation strategy for stereo correspondence based on approximated joint bilateral filtering[C]. Asian Conference on Computer Vision, Queenstown, New Zealand, 2010, 5995:371-380.
[75] MATTOCCIA S. A locally global approach to stereo correspondence[C]. IEEE International Conference on Computer Vision Workshops, IEEE, 2009:1763-1770.
[76] MATTOCCIA S. Improving the accuracy of fast dense stereo correspondence algorithms by enforcing local consistency of disparity fields[C]. 3D Data Processing, Visualization, and Transmission, Paris, Frame, 2010:17-20.
[77] MATTOCCIA S. Fast locally consistent dense stereo on multicore[C]. 6th IEEE Embedded Computer Vision Workshop(ECVW2010), CVPR workshop, IEEE, 2010:69-76.
[78] MATTOCCIA S. Accurate dense stereo by constraining local consistency on superpixels[C]. 20th International Conference on Pattern Recognition, Istambul, Turkey, 2010:1832-1835.
[79] ZHANG C, LI Z W, CHENG Y H, et al.. MeshStereo:a global stereo model with mesh alignment regularization for view interpolation[C]. 15th IEEE International Conference on Computer Vision(ICCV), IEEE, 2015:2057-2065.
[80] 宋涛, 熊文莉, 侯培国, 等.基于极曲线几何和支持邻域的鱼眼图像立体匹配[J].光学精密工程, 2016, 24(8):2050-2058. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201608028.htm

SONG T, XIONG W L, HOU P G, et al.. Stereo matching for fish-eye images based on epipolar geometry and support neighborhood[J]. Opt. Precision Eng., 2016, 24(8):2050-2058.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201608028.htm
[81] 王晓燕, 王世刚, 姜秀红, 等.亮度优化立体视频视觉舒适度评价[J].中国光学, 2015, 8(3):394-400. http://www.chineseoptics.net.cn/CN/abstract/abstract9300.shtml

WANG X Y, WANG SH G, JIANG X H, et al. Evaluation of stereo video visual comfort based on luminance optimization[J]. Chinese Optics, 2015, 8(3):394-400.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9300.shtml
[82] 高礼圳, 刘书桂, 韩振华.零件的角点提取及匹配定位[J].中国光学, 2016, 9(4):397-404. http://www.chineseoptics.net.cn/CN/abstract/abstract9445.shtml

GAO L ZH, LIU SH G, HAN ZH H. Corner extraction and matching location of parts[J]. Chinese Optics, 2016, 9(4):397-404.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9445.shtml
[83] GLUCKMAN J, NAYAR S K, THORESZ K J. Real-time omnidirectional and panoramic stereo[C]. 1998 DARPA Image Understanding Workshop, California, USA, 1998:299-303.
[84] KOYASU H S, MIURA J, SHIRAI Y. Recognizing moving obstacles for robot navigation using real-time omnidirectional stereo vision[J]. J. Robotics and Mechatronics, 2002, 14(2):147-156. doi: 10.20965/jrm.2002.p0147
[85] CABRAL E L L, SOUZA J J C, HUNOLD M C. Omnidirectional stereo vision with a hyperbolic double lobed mirror[C]. 17th International Conference on Pattern Recognition, IEEE, 2004:1-9.
[86] JANG G, KIM S, KWEON I. Single-camera panoramic stereo system with single-viewpoint optics[J]. Optics Letters, 2006, 31(1):41-43. doi: 10.1364/OL.31.000041
[87] SU L C, ZHU F. Design of a novel omnidirectional stereo vision system[J]. Acta Automatica Sinica, 2006, 32(1):67-72.
[88] LI W M, LI Y F. Single-camera panoramic stereo imaging system with a fisheye lens and aconvex mirror[J]. Optics Express, 2011, 19(7):5855-5867. doi: 10.1364/OE.19.005855
[89] HUANG Z, BAI J, HOU X Y. Design of panoramic stereo imaging with single optical system[J]. Optics Express, 2012, 20(6):6085-6096. doi: 10.1364/OE.20.006085
[90] 黄治. 单传感器全景立体环带成像光学系统的研究[D]. 杭州: 浙江大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10335-1014269148.htm

HUANG ZH. Study of panoramic stereo imaging with single optical system[D]. Hangzhou:Zhejiang University, 2014.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10335-1014269148.htm
[91] HE Y, WANG L X, CAI Y, et al.. Monocular catadioptric panoramic depth estimation via caustics-based virtual scene transition[J]. J. Optical Society of America A, 2016, 33(9):1872-1879. doi: 10.1364/JOSAA.33.001872
[92] CARUSO D, ENGEL J, CREMERS D. Large-scale direct SLAM for omnidirectional cameras[C]. IEEE International Conference on Intelligent Robort & Systems, IEEE, 2015:141-148.