[1] LEWIS N S. Research opportunities to advance solar energy utilization[J]. Science, 2016, 351(6271):10.1126/science.aad1920. doi: 10.1126/science.aad1920
[2] National Renewable Energy Laboratory, Research cell record efficiency chart[EB/OL].[2017-04-05]. https://www.nrel.gov/pv/assets/images/efficiency-chart.png.
[3] CHEMISANA D. Building integrated concentrating photovoltaics:a review[J]. Renew. Sust. Energ. Rev., 2011, 15(1):603-611. doi: 10.1016/j.rser.2010.07.017
[4] BURKHARDT J J, HEATH G A, TURCHI C S. Life cycleassessment of a parabolic trough concentrating solar power plant and the impacts of key design alternatives[J]. Environmental Science & Technology, 2011, 45(6):2457-2464. doi: 10.1021/es400821x
[5] WHITAKER M B, HEATH G A, BURKHARDT J J, et al. Life cycle assessment of a power tower concentrating solar plant and the impacts of key design alternatives[J]. Environmental Science & Technology, 2013, 47(11):5896-5903. doi: 10.1021/es400821x
[6] WEBER W, LAMBE J. Luminescent greenhouse collector for solar radiation[J]. Applied Optics, 1976, 152299-2300. http://www.ncbi.nlm.nih.gov/pubmed/20165383
[7] BATCHELDER J S, ZEWAIL A H, COLE T. Luminescent solar concentrators.1.theory of operation and techniques for performance evaluation[J]. Applied Optics, 1979, 18(18):3090-3110. doi: 10.1364/AO.18.003090
[8] BATCHELDER J S, ZEWAIL A H, COLE T. Luminescent solar concentrators.2.experimental and theoretical-analysis of their possible efficiencies[J]. Applied Optics, 1981, 20(21):3733-3754. doi: 10.1364/AO.20.003733
[9] YABLONOVITCH E. Thermodynamics of the fluorescent planar concentrator[J]. J. Opt. Soc. Am., 1980, 70(11):1362-1363. doi: 10.1364/JOSA.70.001362
[10] HERMANN A M. Luminescent solar concentrators-a review[J]. Sol. Energy, 1982, 29(4):323-329. doi: 10.1016/0038-092X(82)90247-X
[11] RIES H. Thermodynamic limitations of the concentration of electromagnetic-radiation[J]. J. Opt. Soc. Am., 1982, 72(3):380-385. doi: 10.1364/JOSA.72.000380
[12] SANSREGRET J, DRAKE J M, THOMAS W R L, et al.. Light transport in planar luminescent solar concentrators-the role of dcm self-absorption[J]. Applied Optics, 1983, 22(4):573-577. doi: 10.1364/AO.22.000573
[13] CURRIE M J, MAPEL J K, HEIDEL T D, et al.. High-efficiency organic solar concentrators for photovoltaics[J]. Science, 2008, 321(5886):226-228. doi: 10.1126/science.1158342
[14] ZHAO Y, LUNT R R. Transparent luminescent solar concentrators for large-area solar windows enabled by massive stokes-shift nanocluster phosphors[J]. Advanced Energy Materials, 2013, 3(9):1143-1148. doi: 10.1002/aenm.v3.9
[15] SARK W G J H M V, BARNHAM K W J, SLOOFF L H, et al. Luminescent solar concentrators-a review of recent results[J]. Opt. Express, 2008, 16(26):21773-21792. doi: 10.1364/OE.16.021773
[16] KIM J Y, VOZNYY O, ZHITOMIRSKY D, et al.. 25th Anniversary article:colloidal quantum dot materials and devices:a quarter-century of advances[J]. Advanced Materials, 2013, 25(36):4986-5010. doi: 10.1002/adma.201301947
[17] KNOWLES K E, HARTSTEIN K H, KILBURN T B, et al. Luminescent colloidal semiconductor nanocrystals containing copper:synthesis, photophysics, and applications[J]. Chemical Reviews, 2016, 116(18):10820-10851. doi: 10.1021/acs.chemrev.6b00048
[18] NASILOWSKI M, MAHLER B, LHUILLIER E, et al. Two-dimensional colloidal nanocrystals[J]. Chemical Reviews, 2016, 116(18):10934-10982. doi: 10.1021/acs.chemrev.6b00164
[19] PIETRYGA J M, PARK Y-S, LIM J, et al.. Spectroscopic and device aspects of nanocrystal quantum dots[J]. Chemical Reviews, 2016, 116(18):10513-10622. doi: 10.1021/acs.chemrev.6b00169
[20] REISS P, CARRIÈRE M, LINCHENEAU C, et al.. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials[J]. Chemical Reviews, 2016, 116(18):10731-10819. doi: 10.1021/acs.chemrev.6b00116
[21] TALAPIN D V, SHEVCHENKO E V. Introduction:nanoparticle chemistry[J]. Chemical Reviews, 2016, 116(18):10343-10345. doi: 10.1021/acs.chemrev.6b00566
[22] JING L, KERSHAW S V, LI Y, et al.. Aqueous based semiconductor nanocrystals[J]. Chemical Reviews, 2016, 116(18):10623-10730. doi: 10.1021/acs.chemrev.6b00041
[23] XU G, ZENG S, ZHANG B, et al. New generation cadmium-free quantum dots for biophotonics and nanomedicine[J]. Chemical Reviews, 2016, 116(19):12234-12327. doi: 10.1021/acs.chemrev.6b00290
[24] LHUILLIER E, KEULEYAN S, LIU H, et al.. Mid-IR colloidal nanocrystals[J]. Chemistry of Materials, 2013, 25(8):1272-1282. doi: 10.1021/cm303801s
[25] DAI X, ZHANG Z, JIN Y, et al.. Solution-processed, high-performance light-emitting diodes based on quantum dots[J]. Nature, 2014, 515(7525):96-99. doi: 10.1038/nature13829
[26] DANG C, LEE J, BREEN C, et al.. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films[J]. Nat. Nano., 2012, 7(5):335-339. doi: 10.1038/nnano.2012.61
[27] SHIRASAKI Y, SUPRAN G J, BAWENDI M G, et al.. Emergence of colloidal quantum-dot light-emitting technologies[J]. Nat. Photon., 2013, 7(1):13-23. http://www.nature.com/nphoton/journal/v7/n1/abs/nphoton.2012.328.html
[28] SUN Q, WANG Y A, LI L S, et al.. Bright, multicoloured light-emitting diodes based on quantum dots[J]. Nat Photon., 2007, 1(12):717-722. doi: 10.1038/nphoton.2007.226
[29] BAE W K, BROVELLI S, KLIMOV V I. Spectroscopic insights into the performance of quantum dot light-emitting diodes[J]. MRS Bulletin, 2013, 38(9):721-730. doi: 10.1557/mrs.2013.182
[30] 周青超, 柏泽龙, 鲁路, 等.白光LED远程荧光粉技术研究进展与展望[J].中国光学, 2015, 8(3):313-328. http://www.chineseoptics.net.cn/CN/abstract/abstract9292.shtml

ZHOU Q CH, BAI Z L, LU L, et al.. Remote phosphor technology for white LED applications:advances and prospects[J]. Chinese Optics, 2015, 8(3):313-328.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9292.shtml
[31] 马航, 李邓化, 陈雯柏, 等.氧化锌作为电子传输层的量子点发光二极管[J].发光学报, 2017, 38(4):507-513. http://youxian.cnki.com.cn/yxdetail.aspx?filename=GZXB2017042802T&dbname=CAPJ2015

MA H, LI D H, CHEN W B, et al.. Quantum dot light emitting diodes with ZnO electron transport layer[J]. Chinese J. Luminescence, 2017, 38(4):507-513.(in Chinese) http://youxian.cnki.com.cn/yxdetail.aspx?filename=GZXB2017042802T&dbname=CAPJ2015
[32] MEDINTZ I L, UYEDA H T, GOLDMAN E R, et al.. Quantum dot bioconjugates for imaging, labelling and sensing[J]. Nat. Mater., 2005, 4(6):435-446. doi: 10.1038/nmat1390
[33] CLIFFORD J P, KONSTANTATOS G, JOHNSTON K W, et al.. Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors[J]. Nat. Nano., 2009, 4(1):40-44. doi: 10.1038/nnano.2008.313
[34] 胡先运, 孟铁宏, 张汝国, 等.基于InP@ZnS QDs/Dured纳米荧光探针的DNA检测[J].发光学报, 2017, 38(3):288-295. http://cdmd.cnki.com.cn/Article/CDMD-10286-1016215773.htm

HU X Y, MENG T H, ZHANG R G, et al.. InP@ZnS QDs/dured fluorescent nanoprobe for the detection of DNA[J]. Chinese J. Luminescence, 2017, 38(3):288-295.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10286-1016215773.htm
[35] SCHOLES G D, RUMBLES G. Excitons in nanoscale systems[J]. Nat. Mater., 2006, 5(9):683-696. doi: 10.1038/nmat1710
[36] RUSSELL K J, LIU T-L, CUI S, et al.. Large spontaneous emission enhancement in plasmonic nanocavities[J]. Nat. Photon., 2012, 6(7):459-462. doi: 10.1038/nphoton.2012.112
[37] NOZIK A J, BEARD MC, LUTHER J M, et al. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells[J]. Chemical Reviews, 2010, 110(11):6873-6890. doi: 10.1021/cr900289f
[38] KAMAT P V. Semiconductor surface chemistry as holy grail in photocatalysis and photovoltaics[J]. Accounts of Chemical Research, 2017, 50(3):527-531. doi: 10.1021/acs.accounts.6b00528
[39] LAN X, MASALA S, SARGENT E H. Charge-extraction strategies for colloidal quantum dot photovoltaics[J]. Nat. Mater., 2014, 13(3):233-240. doi: 10.1038/nmat3816
[40] 李正顺, 岳圆圆, 张艳霞, 等.丁胺包裹的CdSe量子点敏化的TiO2纳米晶薄膜电子转移机制[J].中国光学, 2015, 8(3):428-438. http://www.chineseoptics.net.cn/CN/abstract/abstract9305.shtml

LI ZH SH, YUE Y Y, ZHANG Y X, et al.. Electron transfer mechanism of butylamine-capped CdSe quantum dot sensitized nanocrystalline TiO2 films[J]. Chinese Optics, 2015, 8(3):428-438.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9305.shtml
[41] BRONSTEIN N D, LI L, XU L, et al.. Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells[J]. ACS Nano, 2014, 8(1):44-53. doi: 10.1021/nn404418h
[42] BRONSTEIN N D, YAO Y, XU L, et al.. Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration[J]. ACS Photonics, 2015, 2(11):1576-1583. doi: 10.1021/acsphotonics.5b00334
[43] XU L, YAO Y, BRONSTEIN N D, et al.. Enhanced photon collection in luminescent solar concentrators with distributed Bragg reflectors[J]. ACS Photonics, 2016, 3(2):278-285. doi: 10.1021/acsphotonics.5b00630
[44] KLIMOV V I, BAKER T A, LIM J, et al.. Quality factor of luminescent solar concentrators and practical concentration limits attainable with semiconductor quantum dots[J]. ACS Photonics, 2016, 3(6):1138-1148. doi: 10.1021/acsphotonics.6b00307
[45] MEINARDI F, MCDANIEL H, CARULLI F, et al.. Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots[J]. Nature Nanotechnology, 2015, 10(10):878-885. doi: 10.1038/nnano.2015.178
[46] LI H, WU K, LIM J, et al.. Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators[J]. Nature Energy, 2016, 116157. http://www.nature.com/articles/nenergy2016157
[47] COROPCEANU I, BAWENDI M G. Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency[J]. Nano Lett., 2014, 14(7):4097-4101. doi: 10.1021/nl501627e
[48] GUTIERREZ G D, COROPCEANU I, BAWENDI M G, et al.. A Low reabsorbing luminescent solar concentrator employing pi-conjugated polymers[J]. Advanced Materials, 2016, 28(3):497-501. doi: 10.1002/adma.v28.3
[49] BRADSHAW L R, KNOWLES K E, MCDOWALL S, et al.. Nanocrystals for luminescent solar concentrators[J]. Nano Lett., 2015, 15(2):1315-1323. doi: 10.1021/nl504510t
[50] ERICKSON C S, BRADSHAW L R, MCDOWALL S, et al.. Zero-reabsorption doped-nanocrystal luminescent solar concentrators[J]. ACS Nano, 2014, 8(4):3461-3467. doi: 10.1021/nn406360w
[51] KNOWLES K E, KILBURN T B, ALZATE D G, et al.. Bright CuInS2/CdS nanocrystal phosphors for high-gain full-spectrum luminescent solar concentrators[J]. Chemical Communications, 2015, 51(44):9129-9132. doi: 10.1039/C5CC02007G
[52] SUMNER R, EISELT S, KILBURN T B, et al.. Analysis of optical losses in high-efficiency CuInS2-based nanocrystal luminescent solar concentrators:balancing absorption versus scattering[J]. J. Physical Chemistry C, 2017, 121(6):3252-3260. doi: 10.1021/acs.jpcc.6b12379
[53] ZHOU Y, BENETTI D, FAN Z, et al.. Near infrared, highly efficient luminescent solar concentrators[J]. Advanced Energy Materials, 2016, 6(11):1501913. doi: 10.1002/aenm.201501913
[54] KAYSIR M D R, FLEMING S, ARGYROS A. Modeling of stimulated emission based luminescent solar concentrators[J]. Opt. Express, 2016, 24(26):A1546-A1559. doi: 10.1364/OE.24.0A1546
[55] LI C, CHEN W, WU D, et al. Large Stokes shift and high efficiency luminescent solar concentrator incorporated with CuInS2/ZnS quantum dots[J]. Sci Rep-Uk, 2015, 517777. http://www.ncbi.nlm.nih.gov/pubmed/26642815
[56] MEINARDI F, EHRENBERG S, DHAMO L, et al.. Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots[J]. Nat. Photon., 2017, 11(3):177-185. doi: 10.1038/nphoton.2017.5
[57] CONNELL R, FERRY V E. Integrating photonics with luminescent solar concentrators:optical transport in the presence of photonic mirrors[J]. J. Physical Chemistry C, 2016, 120(37):20991-20997. doi: 10.1021/acs.jpcc.6b03304
[58] WALDRON D L, PRESKE A, ZAWODNY J M, et al.. PbSe quantum dot based luminescent solar concentrators[J]. Nanotechnology, 2017, 28(9):095205. doi: 10.1088/1361-6528/aa577f
[59] DEBIJE M G, VERBUNT P P C. Thirty years of luminescent solar concentrator research:solar energy for the built environment[J]. Adv. Energ. Mater., 2012, 2(1):12-35. doi: 10.1002/aenm.201100554
[60] BOMM J, BUECHTEMANN A, CHATTEN A J, et al.. Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators[J]. Sol. Energ. Mat. Sol. C, 2011, 95(8):2087-2094. doi: 10.1016/j.solmat.2011.02.027
[61] MEINARDI F, COLOMBO A, VELIZHANIN K A, et al.. Large-area luminescent solar concentrators based on 'Stokes-shift-engineered' nanocrystals in a mass-polymerized PMMA matrix[J]. Nature Photonics, 2014, 8(5):392-399. doi: 10.1038/nphoton.2014.54
[62] PURCELL-MILTON F, GUN'KO Y K. Quantum dots for luminescent solar concentrators[J]. J. Materials Chemistry, 2012, 22(33):16687-16697. doi: 10.1039/c2jm32366d
[63] JEONG B G, PARK Y-S, CHANG J H, et al.. Colloidal spherical quantum wells with near-unity photoluminescence quantum yield and suppressed blinking[J]. ACS Nano, 2016, 10(10):9297-9305. doi: 10.1021/acsnano.6b03704
[64] COROPCEANU I, ROSSINELLI A, CARAM J R, et al.. Slow-injection growth of seeded CdSe/CdS nanorods with unity fluorescence quantum yield and complete shell to core energy transfer[J]. ACS Nano, 2016, 10(3):3295-3301. doi: 10.1021/acsnano.5b06772
[65] LI L, DAOU T J, TEXIER I, et al.. Highly luminescent CuInS2/ZnS core/shell nanocrystals:cadmium-free quantum dots for in vivo imaging[J]. Chemistry of Materials, 2009, 21(12):2422-2429. doi: 10.1021/cm900103b
[66] ZANG H, LI H, MAKAROV N S, et al.. Thick-shell CuInS2/ZnS quantum dots with suppressed "blinking" and narrow single-particle emission line widths[J]. Nano Lett., 2017, 17(3):1787-1795. doi: 10.1021/acs.nanolett.6b05118
[67] LEVCHUK I, WURTH C, KRAUSE F, et al.. Industrially scalable and cost-effective Mn2+ doped ZnxCd1-xS/ZnS nanocrystals with 70% photoluminescence quantum yield, as efficient down-shifting materials in photovoltaics[J]. Energy & Environmental Science, 2016, 9(3):1083-1094. http://pubs.rsc.org/en/content/articlepdf/2016/ee/c5ee03165f
[68] WEI Q, ZHAO Y, DI Q, et al.. Good dispersion of large-Stokes-shift heterovalent-doped CdX quantum dots into bulk PMMA matrix and their optical properties characterization[J]. J. Physical Chemistry C, 2017, 121(11):6152-6159. doi: 10.1021/acs.jpcc.7b00207
[69] 袁曦, 郑金桔, 李海波, 等.Mn掺杂ZnSe量子点变温发光性质研究[J].中国光学, 2015, 8(5):806-813. http://www.chineseoptics.net.cn/CN/abstract/abstract9349.shtml

YUAN X, ZHENG J J, LI H B, et al.. Temperature-dependent photoluminescence properties of Mn-doped ZnSe quantum dots[J]. Chinese Optics, 2015, 8(5):806-813.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9349.shtml
[70] KRUMER Z, PERA S J, VAN DIJK-MOES R J A, et al.. Tackling self-absorption in luminescent solar concentrators with type-Ⅱ colloidal quantum dots[J]. Sol. Energ. Mat. Sol. C, 2013:11157-65. http://www.opticsinfobase.org/abstract.cfm?uri=PV-2012-PW2B.3
[71] ZHONG H, SCHOLES G D. Shape tuning of type Ⅱ CdTe-CdSe colloidal nanocrystal heterostructures through seeded growth[J]. J. American Chemical Society, 2009, 131(26):9170-9171. doi: 10.1021/ja903722d
[72] YOON J, LI L, SEMICHAEVSKY A V, et al.. Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides[J]. Nature Communications, 2011:2343. http://europepmc.org/abstract/MED/21673664
[73] CHOU C H, CHUANG J K, CHEN F C. High-performance flexible waveguiding photovoltaics[J]. Sci. Rep-Uk, 2013:32244. http://europepmc.org/abstract/med/23873225