[1] DENK W, STRICKLER J H, WEBB W W. Two-photon laser scanning fluorescence microscopy[J]. Science, 1990, 248(4951):73-76. doi: 10.1126/science.2321027
[2] DOMBECK D A, HARVEY C D, TIAN L, et al.. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation[J]. Nature Neuroscience, 2010, 13(11):1433-1440. doi: 10.1038/nn.2648
[3] OLIVIER N, LUENGO-OROZ M A, DULOQUIN L, et al.. Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy[J]. Science, 2010, 329(5994):967-971. doi: 10.1126/science.1189428
[4] MIZRAHI A, CROWLEY J C, SHTOYERMAN E, et al.. High-resolution in vivo imaging of hippocampal dendrites and spines[J]. Journal of Neuroscience, 2004, 24(13):3147-3151. doi: 10.1523/JNEUROSCI.5218-03.2004
[5] SVOBODA K, YASUDA R. Principles of two-photon excitation microscopy and its applications to neuroscience[J]. Neuron, 2006, 50(6):823-839. doi: 10.1016/j.neuron.2006.05.019
[6] NIELL C M, SMITH S J. Live optical imaging of nervous system development[J]. Annual Review of Physiology, 2004, 66(1):771-798. doi: 10.1146/annurev.physiol.66.082602.095217
[7] KERR J N, DENKW. Imaging in vivo:watching the brain in action[J]. Nature Reviews Neuroscience, 2008, 9(3):195-205. doi: 10.1038/nrn2338
[8] CHEN C C, LU J, ZUO Y. Spatiotemporal dynamics of dendritic spines in the living brain[J]. Frontires in Neuroanatomy, 2014, 8:28. http://cn.bing.com/academic/profile?id=bf3ed0a24a65f06fd1c6ae6d0b3214a0&encoded=0&v=paper_preview&mkt=zh-cn
[9] PIYAWATTANAMETHA W, COCKER ED, BURNS L D, et al.. In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror[J]. Optics Letters, 2009, 34(15):2309-2311. doi: 10.1364/OL.34.002309
[10] HELMCHEN F, FEE M S, TANK D W, et al.. A miniature head-mounted two-photon microscope:high-resolution brain imaging in freely moving animals[J]. Neuron, 2001, 31:903-912. doi: 10.1016/S0896-6273(01)00421-4
[11] MYAING M T, MACDONALD D J, LI X. Fiber-optic scanning two-photon fluorescence endoscope[J]. Optics Letters, 2006, 31(8):1076-1078. doi: 10.1364/OL.31.001076
[12] PIYAWATTANAMETHA W, BARRETTO R P J, KO T H, et al.. Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two-dimensional scanning mirror[J]. Optics Letters, 2006, 31(13):2018-2020. doi: 10.1364/OL.31.002018
[13] ZONG W, WU R, LI M, et al.. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice[J]. Nature Methods, 2017, 14(7):713-719. doi: 10.1038/nmeth.4305
[14] ATTARDO A, FITZGERALD J E, SCHNITZER M J. Impermanence of dendritic spines in live adult CA1 hippocampus[J]. Nature, 2015, 523(7562):592-596. doi: 10.1038/nature14467
[15] BOCARSLY M E, JIANG W C, WANG C, et al.. Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain[J]. Biomedical Optics Express, 2015, 6(11):4546-4556. doi: 10.1364/BOE.6.004546
[16] CODA S, SIERSEMA P D, STAMP G W, et al.. Biophotonic endoscopy:a review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer[J]. Endoscopy International Open, 2015, 3(5):E380-392. doi: 10.1055/s-00025476
[17] GU M, BAO H, KANG H. Fibre-optical microendoscopy[J]. Journal of Microscopy, 2014, 254(1):13-18. doi: 10.1111/jmi.12119
[18] BIRD D, GU M. Fibre-optic two-photon scanning fluorescence microscopy[J]. Journal of Microscopy, 2002, 208:35-48. doi: 10.1046/j.1365-2818.2002.01059.x
[19] BAO H C, ALLEN J, PATTIE R, et al.. Fast handheld two-photon fluorescence microendoscope with a 475μm×475μm field of view for in vivo imaging[J]. Optics Letters, 2008, 33(12):1333-1335. doi: 10.1364/OL.33.001333
[20] FU L, GU M. Fibre-optic nonlinear optical microscopy and endoscopy[J]. Journal of Microscopy, 2007, 226:195-206. doi: 10.1111/jmi.2007.226.issue-3
[21] FLUSBERG B A, COCKER E D, PIYAWATTANAMETHA W, et al.. Fiber-optic fluorescence imaging[J]. Nature Methods, 2005, 2(12):941-950. doi: 10.1038/nmeth820
[22] FLUSBERG B A, JUNG J C, COCKER E D, et al.. In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope[J]. Optics Letters, 2005, 30(17):2272-2274. doi: 10.1364/OL.30.002272
[23] MYAING M T, YE J Y, NORRIS T B, et al.. Enhanced two-photon biosensing with double-clad photonic crystal fibers[J]. Optics Letters, 2003, 28(14):1224-1226. doi: 10.1364/OL.28.001224
[24] FU L, JAIN A, XIE H, et al.. Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror[J]. Optics Express, 2006, 14(3):1027-1032. doi: 10.1364/OE.14.001027
[25] LIANG W X, HALL G, MESSERSCHMIDT B, et al.. Nonlinear optical endomicroscopy for label-free functional histology in vivo[J]. Light:Science & Applications, 2017, 6(7):e17082. https://www.researchgate.net/publication/320836063_Nonlinear_optical_endomicroscopy_for_label-free_functional_histology_in_vivo
[26] AKINS M L, LUBY-PHELPS K, MAHENDROO M. Second harmonic generation imaging as a potential tool for staging pregnancy and predicting preterm birth[J]. Journal of Biomedical Optics, 2010, 15(2):026020. doi: 10.1117/1.3381184
[27] OHEIM M, BEAUREPAIRE E, CHAIGNEAU E, et al.. Two-photon microscopy in brain tissue:parameters influencing the imaging depth[J]. Journal of Neuroscience Methods, 2001, 111(1):29-37. doi: 10.1016/S0165-0270(01)00438-1
[28] CATALANO I M, CINGOLANI A. Three-photon absorption coefficient determination by means of nonlinear luminescence experiments[J]. Journal of Applied Physics, 1979, 50(9):5638-5641. doi: 10.1063/1.326738
[29] DAVEY A P, BOURDIN E, HENARI F, et al.. Three photon induced fluorescence from a conjugated organic polymer for infrared frequency upconversion[J]. Applied Physics Letters, 1995, 67(7):884-885. doi: 10.1063/1.114724
[30] HELL S F, BAHLMANN K, SCHRADER M, et al.. Three-photon excitation in fluorescence microscopy[J]. Journal of Biomedical Optics, 1996, 1(1):71-74. doi: 10.1117/12.229062
[31] GRYCZYNSKI I, SZMACINSKI H, LAKOWICZ J R. On the possibility of calcium imaging using indo-1 with three-photon excitation[J]. Photochemistry and Photobiology, 1995, 62(4):804-808. doi: 10.1111/php.1995.62.issue-4
[32] GRYCZYNSKI I, MALAK H, LAKOWICZ J R, et al.. Fluorescence spectral properties of troponin c mutant f22w with one-, two-, and three-photon excitation[J]. Biophysics Journal, 1996, 71(6):3448-3453. doi: 10.1016/S0006-3495(96)79540-1
[33] XU C, ZIPFEL W, SHEAR J B, et al.. Multiphoton fluorescence excitation:New spectral windows for biological nonlinear microscopy[J]. Proceedings of the National Academy of Sciences, 1996, 93:10763-10768. doi: 10.1073/pnas.93.20.10763
[34] WOKOSIN D L, CENTONZE V E, CRITTENDEN S, et al.. Three-photon excitation fluorescence imaging of biological specimens using an all-solid-state laser[J]. Bioimaging, 1996, 4:208-214. doi: 10.1002/1361-6374(199609)4:3<208::AID-BIO11>3.3.CO;2-A
[35] MATSUDA H, FUJIMOTO Y, ITO S, et al.. Development of near-infrared 35 fs laser microscope and its application to the detection of three-and four-photon fluorescence of organic microcrystals[J]. The Journal of Physical Chemistry, 2006, 110:1091-1094. doi: 10.1021/jp0561165
[36] NORRIS G, AMOR R, DEMPSTER J, et al.. A promising new wavelength region for three-photon fluorescence microscopy of live cells[J]. Journal of Microscopy, 2012, 246(3):266-273. doi: 10.1111/j.1365-2818.2012.03610.x
[37] HORTON N G, WANG K, KOBAT D, et al.. In vivo three-photon microscopy of subcortical structures within an intact mouse brain[J]. Nature Photonics, 2013, 7(3):205-209. doi: 10.1038/nphoton.2012.336
[38] ORON D, TAL E, SILBERBERG Y. Scanningless depth-resolved microscopy[J]. Optics Express, 2005, 13(5):1468-1476. doi: 10.1364/OPEX.13.001468
[39] ROWLANDS C J, PARK D, BRUNS O T, et al.. Wide-field three-photon excitation in biological samples[J]. Light:Science & Applications, 2016, 5:e16255. http://cn.bing.com/academic/profile?id=a8d6cfbf060c84ba943d8038832668ee&encoded=0&v=paper_preview&mkt=zh-cn
[40] HELMCHEN F, DENK W. Deep tissue two-photon microscopy[J]. Nature Methods, 2005, 2(12):932-940. doi: 10.1038/nmeth818
[41] CHOI H, YEW E Y, HALLACOGLU B, et al.. Improvement of axial resolution and contrast in temporally focused widefield two-photon microscopy with structured light illumination[J]. Biomed Opt Express, 2013, 4(7):995-1005. doi: 10.1364/BOE.4.000995