[1] LIM S Y, SHEN W, GAO Z. Carbon quantum dots and their applications[J]. Chemical Society Reviews, 2015, 44(1):362-381. doi: 10.1039/C4CS00269E
[2] BAKER S N, BAKER G A. Luminescent carbon nanodots:emergent nanolights[J]. Angewandte Chemie International Edition, 2010, 49(38):6726-6744. doi: 10.1002/anie.200906623
[3] LI X, RUI M, SONG J, SHEN Z, et al.. Carbon and graphene quantum dots for optoelectronic and energy devices:a review[J]. Advanced Functional Materials, 2015, 25(31):4929-4947. doi: 10.1002/adfm.v25.31
[4] ZHAO A, CHEN Z, ZHAO C, et al.. Recent advances in bioapplications of C-dots[J]. Carbon, 2015, 85:309-327. doi: 10.1016/j.carbon.2014.12.045
[5] HOLA K, ZHANG Y, WANG Y, et al.. Carbon dots-emerging light emitters for bioimaging, cancer therapy and optoelectronics[J]. Nano Today, 2014, 9(5):590-603. doi: 10.1016/j.nantod.2014.09.004
[6] ZHENG X T, ANANTHANARAYANAN A, LUO K Q, et al.. Glowing graphene quantum dots and carbon dots:properties, syntheses, and biological applications[J]. Small, 2015, 11(14):1620-1636. doi: 10.1002/smll.v11.14
[7] LECROY G E, YANG S T, YANG F, et al.. Functionalized carbon nanoparticles:syntheses and applications in optical bioimaging and energy conversion[J]. Coordination Chemistry Reviews, 2016, 320-321:66-81. doi: 10.1016/j.ccr.2016.02.017
[8] DING C, ZHU A, TIAN Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging[J]. Accounts of Chemical Research, 2014, 47(1):20-30. doi: 10.1021/ar400023s
[9] LUO P G, SAHU S, YANG S-T, et al.. Carbon "quantum" dots for optical bioimaging[J]. Journal of Materials Chemistry B, 2013, 1(16):2116-2127. doi: 10.1039/c3tb00018d
[10] ZHANG J, YU S H. Carbon dots:large-scale synthesis, sensing and bioimaging[J]. Materials Today, 2016, 19(7):382-393. doi: 10.1016/j.mattod.2015.11.008
[11] FAN Z, LI S, YUAN F, et al.. Fluorescent graphene quantum dots for biosensing and bioimaging[J]. RSC Advances, 2015, 5(25):19773-19789. doi: 10.1039/C4RA17131D
[12] MIAO P, HAN K, TANG Y, et al.. Recent advances in carbon nanodots:synthesis, properties and biomedical applications[J]. Nanoscale, 2015, 7(5):1586-1595. doi: 10.1039/C4NR05712K
[13] WEGNER K D, HILDEBRANDT N. Quantum dots:bright and versatile in vitro and in vivo fluorescence imaging biosensors[J]. Chemical Society Reviews, 2015, 44(14):4792-4834. doi: 10.1039/C4CS00532E
[14] LEMENAGER G, DE LUCA E, SUN Y P, et al.. Super-resolution fluorescence imaging of biocompatible carbon dots[J]. Nanoscale, 2014, 6(15):8617-8623. doi: 10.1039/C4NR01970A
[15] GEORGAKILAS V, PERMAN J A., TUCEK J, et al.. Broad family of carbon nanoallotropes:classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures[J]. Chemical Reviews, 2015, 115(11):4744-4822. doi: 10.1021/cr500304f
[16] XU X, RAY R, GU Y, et al.. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society, 2004, 126(40):12736-12737. doi: 10.1021/ja040082h
[17] SUN Y P, ZHOU B, LIN Y, et al.. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society, 2006, 128(24):7756-7757. doi: 10.1021/ja062677d
[18] ZHU S, MENG Q, WANG L, et al.. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging[J]. Angewandte Chemie International Edition, 2013, 52(14):3953-3957. doi: 10.1002/anie.v52.14
[19] QU S, WANG X, LU Q, et al.. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots[J]. Angewandte Chemie International Edition, 2012, 51(49):12215-12218. doi: 10.1002/anie.v51.49
[20] LI D, HAN D, QU S N, et al.. Supra-(carbon nanodots) with a strong visible to near-infraredabsorption band and efficient photothermal conversion[J]. Light-Science & Applications, 2016, 5:e16120. https://www.researchgate.net/publication/304707406_Supra-carbon_nanodots_with_a_strong_visible_to_near-infrared_absorption_band_and_efficient_photothermal_conversion
[21] QU S, ZHOU D, LI D, et al.. Toward efficient orange emissive carbon nanodots through conjugated sp(2)-domain controlling and surface charges engineering[J]. Advanced Materials, 2016, 28(18):3516-3521. doi: 10.1002/adma.201504891
[22] LU J, YEO P S E., GAN C K, et al.. Transforming C60 molecules into graphene quantum dots[J]. Nature Nanotechnology, 2011, 6(4):247-252. doi: 10.1038/nnano.2011.30
[23] YANG Y, WU D, HAN S, et al.. Bottom-up fabrication of photoluminescent carbon dots with uniform morphology via a soft-hard template approach[J]. Chemical Communications, 2013, 49(43):4920-4922. doi: 10.1039/c3cc38815h
[24] QU S, SHEN D, LIU X, et al.. Highly luminescent carbon-nanoparticle-based materials:factors influencing photoluminescence quantum Yield[J]. Particle & Particle Systems Characterization, 2014, 31(11):1175-1182. http://cn.bing.com/academic/profile?id=6718076f0004ed337be93ab035390b0b&encoded=0&v=paper_preview&mkt=zh-cn
[25] DING H, YU S B, WEI J S, et al.. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism[J]. ACS Nano, 2016, 10(1):484-491. doi: 10.1021/acsnano.5b05406
[26] LECROY G E, SONKAR S K, YANG F, et al.. Toward structurally defined carbon dots as ultracompact fluorescent probes[J]. ACS Nano, 2014, 8(5):4522-4529. doi: 10.1021/nn406628s
[27] ZHU L, CUI X, WU J, et al.. Fluorescence immunoassaybased on carbon dots as labels for the detection of hu -man immunoglobulin G[J]. Analytical Methods, 2014, 6(12):4430-4436. doi: 10.1039/C4AY00717D
[28] ZHENG M, LIU S, LI J, et al.. Integrating oxaliplatin with highly luminescent carbon dots:an unprecedented theranostic agent for personalized medicine[J]. Advanced Materials, 2014, 26(21):3554-3560. doi: 10.1002/adma.v26.21
[29] LOU Q, QU S, JING P, et al.. Water-triggered luminescent "nano-bombs" based on supra-(carbon nanodots)[J]. Advanced Materials, 2015, 27(8):1389-1394. doi: 10.1002/adma.201403635
[30] 娄庆, 曲松楠.基于超级碳点的水致荧光"纳米炸弹"[J].中国光学, 2015, 8(1):91-98. http://www.chineseoptics.net.cn/CN/abstract/abstract9260.shtml

LOU Q, QU S N. Water triggered luminescent "nano-bombs" based on supra-carbon-nanodots[J]. Chinese Optics, 2015, 8(1):91-98.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9260.shtml
[31] LIU W, LI C, REN Y, et al.. Carbon dots:surface engineering and applications[J]. Journal of Materials Chemistry B, 2016, 4(35):5772-5788. doi: 10.1039/C6TB00976J
[32] SUDOLSKá M, DUBECKY M, SARKAR S, et al.. Nature of absorption bands in oxygen-functionalized graphitic carbon dots[J]. The Journal of Physical Chemistry C, 2015, 119(23):13369-13373. doi: 10.1021/acs.jpcc.5b04080
[33] WANG Y, KALYTCHUK S, ZHANG Y, et al.. Thickness-dependent full-color emission tunability in a flexible carbon dot ionogel[J]. The Journal Of Physical Chemistry Letters, 2014, 5(8):1412-1420. doi: 10.1021/jz5005335
[34] PAN L, SUN S, ZHANG A, et al.. Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing[J]. Advanced Materials, 2015, 27(47):7782-7787. doi: 10.1002/adma.201503821
[35] ZHANG F, LIU F, WANG C, et al.. Effect of lateral size of graphene quantum dots on their properties and application[J]. ACS Applied Materials & Interfaces, 2016, 8(3):2104-2110. http://cn.bing.com/academic/profile?id=f9e20ca7361314cbe0b2e8bae0301ab8&encoded=0&v=paper_preview&mkt=zh-cn
[36] VINCI J C, FERRER I M, SEEDHOUSE S J, et al. Hidden properties of carbon dots revealed after HPLC fractionation[J]. The Journal of Physical Chemistry Letters, 2013, 4(2):239-243. doi: 10.1021/jz301911y
[37] PAN L, SUN S, ZHANG L, et al.. Near-infrared emissive carbon dots for two-photon fluorescence bioimaging[J]. Nanoscale, 2016, 8(39):17350-17356. doi: 10.1039/C6NR05878G
[38] WANG X, CAO L, LU F, et al.. Photoinduced electron transfers with carbon dots[J]. Chemical Communications, 2009(25):3774-3776. doi: 10.1039/b906252a
[39] JIANG K, ZHANG L, LU J, et al.. Triple-mode emission of carbon dots:applications for advanced anti-counterfeiting[J]. Angewandte Chemie International Edition, 2016, 55(25):7231-7235. doi: 10.1002/anie.201602445
[40] DENG Y, ZHAO D, CHEN X, et al.. Long lifetime pure organic phosphorescence based on water soluble carbon dots[J]. Chemical Communications, 2013, 49(51):5751-5753. doi: 10.1039/c3cc42600a
[41] LI Q, ZHOU M, YANG Q, et al.. Efficient room-temperature phosphorescence from nitrogen-doped carbon dots in composite matrices[J]. Chemical Materials, 2016, 28(22):8221-8227. doi: 10.1021/acs.chemmater.6b03049
[42] CAO L, WANG X, MEZIANI M J, et al.. Carbon dots for multiphoton bioimaging[J]. Journal of the American Chemical Society, 2007, 129(37):11318-11319. doi: 10.1021/ja073527l
[43] RUAN S, QIAN J, SHEN S, et al. A simple one-step method to prepare fluorescent carbon dots and their potential application in non-invasive glioma imaging[J]. Nanoscale, 2014, 6(17):10040-10047. doi: 10.1039/C4NR02657H
[44] ZHENG M, RUAN S, LIU S, et al.. Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells[J]. ACS Nano, 2015, 9(11):11455-11461. doi: 10.1021/acsnano.5b05575
[45] WU L, CAI X, NELSON K, et al.. A green synthesis of carbon nanoparticle from honey for real-time photoacoustic imaging[J]. Nano Research, 2013, 6(5):312-325. doi: 10.1007/s12274-013-0308-8
[46] GE J, LAN M, ZHOU B, et al.. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation[J]. Nature Communications, 2014, 5:4536. doi: 10.1038/ncomms5536
[47] GE J, JIA Q, LIU W, et al.. Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice[J]. Advanced Materials, 2015, 27(28):4169-4177. doi: 10.1002/adma.v27.28
[48] GE J, JIA Q, LIU W, et al.. Carbon dots with intrinsic theranostic properties for bioimaging, red-light-triggered photodynamic/photothermal simultaneous therapy in vitro and in vivo[J]. Advanced Healthcare Materials, 2016, 5(6):665-675. doi: 10.1002/adhm.201500720
[49] ZHENG M, LI Y, LIU S, et al.. One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photothermal cancer therapy[J]. ACS Applied Materials & Interfaces, 2016, 8(36):23533-23541. http://cn.bing.com/academic/profile?id=3b5a295a63939846170a6164a756fdbf&encoded=0&v=paper_preview&mkt=zh-cn
[50] SUN H, GAO N, DONG K, et al.. Graphene quantum dots-band-aids used for wound disinfection[J]. ACS Nano, 2014, 8(6):6202-6210. doi: 10.1021/nn501640q
[51] 李欣远, 纪穆为, 王虹智, 等.近红外光热转换纳米晶研究进展[J].中国光学, 2017, 10(5):541-554. http://www.chineseoptics.net.cn/CN/abstract/abstract9545.shtml

LI X Y, JI M W, WANG H ZH, et al.. Research progress of near-infrared photothermal conversion nanocrystals[J]. Chinese Optics, 2017, 10(5):541-554.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9545.shtml
[52] 苗少峰, 杨虹, 黄远辉, 等.光声成像研究进展[J].中国光学, 2015, 8(5):699-713. http://www.chineseoptics.net.cn/CN/abstract/abstract9338.shtml

MIAO SH F, YANG H, Huang Y H, et al.. Research progresses of photoacoustic imaging[J]. Chinese Optics, 2015, 8(5):699-713.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9338.shtml
[53] 张砚, 汪源源, 李伟, 等.基于全变分法重建光声图像[J].光学精密工程, 2012, 20(1):204-212. http://www.opticsjournal.net/abstract.htm?id=OJ120214000041sYu2x5

ZHANG Y, WANG Y Y, LI W, et al.. Reconstruction of photoacoustic image based on total variation[J]. Opt. Precision Eng., 2012, 20(1):204-212.(in Chinese) http://www.opticsjournal.net/abstract.htm?id=OJ120214000041sYu2x5
[54] SHI Y, PAN Y, ZHONG J, et al.. Facile synthesis of gadolinium(Ⅲ) chelates functionalized carbon quantum dots for fluorescence and magnetic resonance dual-modal bioimaging[J].Carbon, 2015, 93:742-750. doi: 10.1016/j.carbon.2015.05.100
[55] XU Y, JIA X H, YIN X B, et al.. Carbon quantum dot stabilized gadolinium nanoprobe prepared via a one-pot hydrothermal approach for magnetic resonance and fluorescence dual-modality bioimaging[J]. Analytical Chemistry, 2014, 86(24):12122-12129. doi: 10.1021/ac503002c
[56] CHEN H, WANG G D, TANG W, et al.. Gd-encapsulated carbonaceous dots with efficient renal clearance for magnetic resonance imaging[J]. Advanced Materials, 014, 26(39):6761-6766. http://cn.bing.com/academic/profile?id=ac7d56e968bcb2d1fb0fc5d682aaeaaf&encoded=0&v=paper_preview&mkt=zh-cn
[57] CHEN H, WANG G D, SUN X, et al.. Mesoporous silica as nanoreactors to prepare gd-encapsulated carbon dots of controllable sizes and magnetic properties[J]. Advanced Functional Materials, 2016, 26(22):3973-3982. doi: 10.1002/adfm.v26.22
[58] REN X, LIU L, LI Y, et al.. Facile preparation of gadolinium chelates functionalized carbon quantum dot based contrast agent for magnetic resonance/fluorescence multimodal imaging[J]. Journal of Materials Chemistry B, 2014, 2(34):5541-5549. doi: 10.1039/C4TB00709C
[59] LIAO H, WANG Z, CHEN S, et al.. One-pot synthesis of gadolinium(Ⅲ) doped carbon dots for fluorescence/magnetic resonance bimodal imaging[J]. RSC Advances, 2015, 5(82):66575-66581. doi: 10.1039/C5RA09948J
[60] SRIVASTAVA S, AWASTHI R, TRIPATHI D, et al.. Magnetic-nanoparticle-doped carbogenic nanocomposite:an effective magnetic resonance/fluorescence multimodal imaging probe[J]. Small, 2012, 8(7):1099-1109. doi: 10.1002/smll.201101863
[61] MARSHALL E. Gene therapy death prompts review of adenovirus vector[J]. Science, 1999, 286(5448):2244. doi: 10.1126/science.286.5448.2244
[62] SAKURAI H, KAWABATA K, SAKURAI F, et al.. Innate immune response induced by gene delivery vectors[J]. International Journal of Pharmaceutics, 2008, 354(1-2):9-15. doi: 10.1016/j.ijpharm.2007.06.012
[63] WANG L, WANG X, BHIRDE A, et al.. Carbon-dot-based two-photon visible nanocarriers for safe and highly efficient delivery of siRNA and DNA[J]. Advanced Healthcare Materials, 2014, 3(8):1203-1209. doi: 10.1002/adhm.v3.8
[64] LIU C, ZHANG P, ZHAI X, et al.. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence[J]. Biomaterials, 2012, 33(13):3604-3613. doi: 10.1016/j.biomaterials.2012.01.052
[65] KIM J, PARK J, KIM H, et al.. Transfection and intracellular trafficking properties of carbon dot-gold nanoparticle molecular assembly conjugated with PEI-pDNA[J]. Biomaterials, 2013, 34(29):7168-7180. doi: 10.1016/j.biomaterials.2013.05.072
[66] HU L, SUN Y, LI S, et al.. Multifunctional carbon dots with high quantum yield for imaging and gene delivery[J]. Carbon, 2014, 67:508-513. doi: 10.1016/j.carbon.2013.10.023
[67] PIERRAT P, WANG R, KERESELIDZE D, et al. Efficient in vitro and in vivo pulmonary delivery of nucleic acid by carbon dot-based nanocarriers[J]. Biomaterials, 2015, 51:290-302. doi: 10.1016/j.biomaterials.2015.02.017
[68] KARTHIK S, SAHA B, GHOSH S K, et al.. Photoresponsive quinoline tethered fluorescent carbon dots for regulated anticancer drug delivery[J]. Chemical Communications, 2013, 49(89):10471-10473. doi: 10.1039/c3cc46078a
[69] WANG H, KE F, MARARENKO A, et al.. Responsive polymer-fluorescent carbon nanoparticle hybrid nanogels for optical temperature sensing, near-infrared light-responsive drug release, and tumor cell imaging[J]. Nanoscale, 2014, 6(13):7443-7452. doi: 10.1039/C4NR01030B
[70] HE L, WANG T, AN J, et al.. Carbon nanodots@zeolitic imidazolate framework-8 nanoparticles for simultaneous pH-responsive drug delivery and fluorescence imaging[J]. Cryst. Eng. Comm., 2014, 16(16):3259-3263. doi: 10.1039/c3ce42506a
[71] PANDEY S, MEWADA A, THAKUR M, et al.. Cysteamine hydrochloride protected carbon dots as a vehicle for the efficient release of the anti-schizophrenic drug haloperidol[J]. RSC Advances, 2013, 3(48):6290-26296. http://cn.bing.com/academic/profile?id=fca925f41926c87ac8c3e0248e976ce7&encoded=0&v=paper_preview&mkt=zh-cn
[72] WANG Q, HUANG X, LONG Y, et al.. Hollow luminescent carbon dots for drug delivery[J]. Carbon, 2013, 59:192-199. doi: 10.1016/j.carbon.2013.03.009
[73] ZHOU L, LI Z, LIU Z, et al.. Luminescent carbon dot-gated nanovehicles for pH-triggered intracellular controlled release and imaging[J]. Langmuir, 2013, 29(21):6396-6403. doi: 10.1021/la400479n
[74] MEWADA A, PANDEY S, THAKUR M, et al.. Swarming carbon dots for folic acid mediated delivery of doxorubicin and biological imaging[J]. Journal of Materials Chemistry B, 2014, 2(6):698-705. doi: 10.1039/C3TB21436B
[75] WANG C, WU C, ZHOU X, et al.. Enhancing cell nucleus accumulation and DNA cleavage activity of anti-cancer drug via graphene quantum dots[J]. Scientific Reports, 2013, 3:2852. doi: 10.1038/srep02852
[76] FAHMI M Z, CHEN J K, HUANG C C, et al.. Phenylboronic acid-modified magnetic nanoparticles as a platform for carbon dot conjugation and doxorubicin delivery[J]. Journal of Materials Chemistry B, 2015, 3(27):5532-5543. doi: 10.1039/C5TB00289C
[77] ZENG Q. SHAO D, HE X, et al.. Carbon dots as a trackable drug delivery carrier for localized cancer therapy in vivo[J]. Journal of Materials Chemistry B, 2016, 4(30):5119-5126. doi: 10.1039/C6TB01259K
[78] GONG X, ZHANG Q, GAO Y, et al.. Phosphorus and nitrogen dual-doped hollow carbon dot as a nanocarrier for doxorubicin delivery and biological imaging[J]. ACS Applied Materials & Interfaces, 2016, 8(18):11288-11297. http://cn.bing.com/academic/profile?id=a44fcbb97915c42f82e63e651c5b3a22&encoded=0&v=paper_preview&mkt=zh-cn
[79] CHEN H, WANG Z, ZONG S, et al.. A graphene quantum dot-based FRET system for nuclear-targeted and real-time monitoring of drug delivery[J]. Nanoscale, 2015, 7(37):15477-15486. doi: 10.1039/C5NR03454J
[80] XU X, ZHANG K, ZHAO L, et al.. Aspirin-based carbon dots, a good biocompatibility of material applied for bioimaging and anti-inflammation[J]. ACS Applied Materials & Interfaces, 2016, 8(48):32706-32716. http://cn.bing.com/academic/profile?id=98e6908cba7edb47edadb7f59b7605a8&encoded=0&v=paper_preview&mkt=zh-cn
[81] DOLMANS D E J G J, FUKUMURA D, JAIN R K. Photodynamic therapy for cancer[J]. Nature Reviews Cancer, 2003, 3(5):380-387. doi: 10.1038/nrc1071
[82] HUANG P, LIN J, WANG X, et al.. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy[J]. Advanced Materials, 2012, 24(37):5104-5110. doi: 10.1002/adma.201200650
[83] BEACK S, KONG W H, JUNG H S, et al.. Photodynamic therapy of melanoma skin cancer using carbon dot-chlorin e6-hyaluronate conjugate[J]. Acta Biomaterialia, 2015, 26:295-305. doi: 10.1016/j.actbio.2015.08.027
[84] WANG J, ZHANG Z, ZHA S, et al.. Carbon nanodots featuring efficient FRET for two-photon photodynamic cancer therapy with a low fs laser power density[J]. Biomaterials, 2014, 35(34):9372-9381. doi: 10.1016/j.biomaterials.2014.07.063
[85] ZHOU L, ZHOU L, GE X, et al.. Multicolor imaging and the anticancer effect of a bifunctional silica nanosystem based on the complex of graphene quantum dots and hypocrellin A[J]. Chemical Commununications, 2015, 51(2):421-424. http://cn.bing.com/academic/profile?id=8201254b55e9f07c6dc5eb28a32805d8&encoded=0&v=paper_preview&mkt=zh-cn
[86] CHOI Y, KIM S, CHOI M H, et al.. Highly biocompatible carbon nanodots for simultaneous bioimaging and targeted photodynamic therapy in vitro and in vivo[J]. Advanced Functional Materials, 2014, 24(37):5781-5789. doi: 10.1002/adfm.201400961
[87] VOGEL A, VENUGOPALAN V. Mechanisms of pulsed laser ablation of biological tissues[J]. Chemical Reviews, 2003, 103(2):577-644. doi: 10.1021/cr010379n
[88] WANG H, SUN Y, YI J, et al.. Fluorescent porous carbon nanocapsules for two-photon imaging, NIR/pH dual-responsive drug carrier, and photothermal therapy[J]. Biomaterials, 2015, 53:117-126. doi: 10.1016/j.biomaterials.2015.02.087
[89] PANDEY S, THAKUR M, MEWADA A, et al.. Carbon dots functionalized gold nanorod mediated delivery of doxorubicin:tri-functional nano-worms for drug delivery, photothermal therapy and bioimaging[J]. Journal of Materials Chemistry B, 2013, 1(38):4972-4982. doi: 10.1039/c3tb20761g
[90] YANG S T, WANG X, WANG H, et al.. Carbon dots as nontoxic and high-performance fluorescence imaging agents[J]. The Journal of Physical Chemistry C, Nanomaterials and Interfaces, 2009, 113(42):18110-18114. doi: 10.1021/jp9085969
[91] TAO H, YANG K, MA Z, et al.. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite[J]. Small, 2012, 8(2):281-290. doi: 10.1002/smll.201101706
[92] WANG K, GAO Z, GAO G., et al.. Systematic safety evaluation on photoluminescent carbon dots[J]. Nanoscale Research Letters, 2013, 8(1):122. doi: 10.1186/1556-276X-8-122
[93] ZHENG X, SHAO D, LI J, et al.. Single and repeated dose toxicity of citric acid-based carbon dots and a derivative in mice[J]. RSC Advances, 2015, 5(111):91398-91406. doi: 10.1039/C5RA18391J
[94] DAS B, DADHICH P, PAL P, et al.. Carbon nanodots from date molasses:new nanolights for the in vitro scavenging of reactive oxygen species[J]. Journal of Materials Chemistry B, 2014, 2(39):6839-6847. doi: 10.1039/C4TB01020E
[95] LI S, GUO Z, ZHANG Y, et al.. Blood compatibility evaluations of fluorescent carbon dots[J]. ACS Applied Materials & Interfaces, 2015, 7(34):19153-19162. http://cn.bing.com/academic/profile?id=a5aeabc32185ce76b46c783b47d4821b&encoded=0&v=paper_preview&mkt=zh-cn
[96] HUANG X, ZHANG F, ZHU L, et al.. Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots[J]. ACS Nano, 2013, 7(7):5684-5693. doi: 10.1021/nn401911k