[1] 洪国彬, 杨钧杰, 卢廷昌.蓝紫光氮化镓光子晶体面射型激光器[J].中国光学, 2014, 7(4):559-571. http://www.chineseoptics.net.cn/CN/abstract/abstract9184.shtml

HONG K B, YANG CH CH, LU T CH. Blue-violet GaN-based photonic crystal surface emitting lasers[J]. Chin. Opt., 2014, 7(4):559-571.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9184.shtml
[2] 秦华, 黄永丹, 孙建东, 等.二维电子气等离激元太赫兹波器件[J].中国光学, 2017, 10(1):51-67. http://www.chineseoptics.net.cn/CN/abstract/abstract9511.shtml

QIN H, HUANG Y D, SUN J D, et al.. Terahertz-wave devices based on plasmons in two-dimensional electron gas[J]. Chin. Opt., 2017, 10(1):51-67.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9511.shtml
[3] 蔡丽娥, 张保平, 张江勇, 等.GaN基蓝光VCSEL的制备及光学特性[J].发光学报, 2016, 37(4):452-456. http://www.cqvip.com/QK/92489X/201604/668520133.html

CAI L E, ZHANG B P, ZHANG J Y, et al.. Fabrication and characteristics of GaN-based blue VCSEL[J]. Chinese J. Luminescence, 2016, 37(4):452-456.(in Chinese) http://www.cqvip.com/QK/92489X/201604/668520133.html
[4] 邹水平, 吴柏禧, 万珍平, 等.电-热应力对GaN基白光LED可靠性的影响[J].发光学报, 2016, 37(1):124-129. http://www.cqvip.com/QK/92489X/201601/667808202.html

ZOU SH P, WU B X, WAN ZH P, et al.. Effect of current-temperature stress on the reliability of GaN LED[J]. Chinese J. Luminescence, 2016, 37(1):124-129.(in Chinese) http://www.cqvip.com/QK/92489X/201601/667808202.html
[5] 李志全, 王聪, 李文超, 等.利用Ag/P-GaN双光栅改善LED发光特性[J].光学 精密工程, 2017, 25(5):1185-1191. http://wuxizazhi.cnki.net/Sub/yqyb/a/GXJM201705009.html

LI ZH Q, WANG C, LI W CH, et al.. Improving LED luminescence properties by using Ag/P-GaN double grating[J]. Opt. Precision Eng., 2017, 25(5):1185-1191.(in Chinese) http://wuxizazhi.cnki.net/Sub/yqyb/a/GXJM201705009.html
[6] 王永进, 张锋华, 高绪敏, 等.面向可见光波段的非周期悬空GaN薄膜光栅[J].光学 精密工程, 2017, 25(12):3020-3026. https://www.wenkuxiazai.com/word/00576a9fd5bbfd0a795673eb-1.doc

WANG Y J, ZHANG F H, GAO X M, et al.. Freestanding non-periodic GaN gratings in visible wavelength region[J]. Opt. Precision Eng., 2017, 25(12):3020-3026.(in Chinese) https://www.wenkuxiazai.com/word/00576a9fd5bbfd0a795673eb-1.doc
[7] SOMMER A H. Stability of photocathode[J]. Appl. Opt., 1973, 12(1):90-92. doi: 10.1364/AO.12.000090
[8] 徐江涛.真空残气对GaAs阴极发射性能的影响[J].应用光学, 2003, 24(2):13-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yygx200302005

XU J T. Effect of residual gas on emission property of Gallium Arsenide cathode in vacuum[J]. J. Appl. Opt., 2003, 24(2):13-15.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yygx200302005
[9] WADA T, NITTA T, NOMURA T. Influence of exposure to CO, CO2 and H2O on the stability of GaAs photocathodes[J]. Jpn. J. Appl. Phys., 1990, 29(10):2087-2091. https://www.researchgate.net/profile/Shiyu_Sun4
[10] MACHUCA F. A Thin Film p-type GaN Photocathode: prospect for a high performance electron emitter[D]. Stanford: University Stanford, 2004.
[11] ZOU J J, CHANG B K. Gradient-doping negative electron affinity GaAs photocathodes[J]. Opt. Eng., 2006, 45(5):054001. doi: 10.1117/1.2205171
[12] YANG ZH, CHANG B K, ZOU J J. Comparison between gradient-doping GaAs photocathode and uniform-doping GaAs photocathode[J]. Appl. Opt., 2007, 46(28):7035-7039. doi: 10.1364/AO.46.007035
[13] 乔建良, 常本康, 杜晓晴, 等.反射式负电子亲和势GaN光电阴极量子效率衰减机理研究[J].物理学报, 2010, 59(4):2855-2859. doi: 10.7498/aps.59.2855

QIAO J L, CHANG B K, DU X Q, et al.. Quantum efficiency decay mechanism for reflection mode negative electron affinity GaN photocathode[J]. Acta Phys. Sinica, 2010, 59(4):2855-2859.(in Chinese) doi: 10.7498/aps.59.2855
[14] 高频, 王晓晖, 杜玉杰, 等.NEA GaN光电阴极的制备与评估[J].红外技术, 2011, 33(6):332-335. http://www.cqvip.com/QK/92901X/201106/38270750.html

GAO P, WANG X H, DU Y J, et al.. Preparation and evaluation of NEA GaN photocthode[J]. Infrared Technol., 2011, 33(6):332-335.(in Chinese) http://www.cqvip.com/QK/92901X/201106/38270750.html
[15] IWAYA M, TAKEUCHI T, YAMAGUCHI S, et al.. Reduction of etch pit density in organometallic vapor phase epitaxy-grown GaN on sapphire by insertion of a low-temperature-deposited buffer layer between high-temperature-grown GaN[J]. Jpn. J. Appl. Phys., 1998, 37:L316-L318. doi: 10.1143/JJAP.37.L316
[16] NAKCMURA S, MUKAI T, SENOH M, et al.. Thermal annealing effects on p-type Mg-doped GaN films[J]. Jpn. J. Appl. Phys., 1992, 31:L139-L140. doi: 10.1143/JJAP.31.L139
[17] MACHUCA F, LIU Z. Fabrication of group Ⅲ-Nitride photocathode having Cs activation layer: US, 0170324 A1[P]. 2006-01-01.
[18] TERESHCHENKO O E, SHAIBLER G, YAROSHEVICH A S, et al.. Low-temperature method of cleaning p-GaN(0001) surfaces for photoemitters with effective negative electron affinity[J]. Phys. Solid State, 2004, 46(10):1949-1953. doi: 10.1134/1.1809437
[19] KING S W, BARNAK J P, BREMSER M D, et al.. Cleaning of AlN and GaN surfaces[J]. J. Appl. Phys., 1998, 84(9):5248-5260. doi: 10.1063/1.368814
[20] 乔建良, 田思, 常本康, 等.负电子亲和势GaN光电阴极激活机理研究[J].物理学报, 2009, 58(8):5847-5851. doi: 10.7498/aps.58.5847

QIAO J L, TIAN S, CHANG B K, et al.. Activation mechanism of negative electron affinity GaN photocathode[J]. Acta Phys. Sinica, 2009, 58(8):5847-5851.(in Chinese) doi: 10.7498/aps.58.5847
[21] 邹继军, 常本康, 杜晓晴, 等.GaAs光电阴极光谱响应曲线形状的变化[J].光谱学与光谱分析, 2007, 27(8):1465-1468. http://www.cqvip.com/QK/90993X/200708/25252972.html

ZOU J J, CHANG B K, DU X Q, et al.. Variation of spectral response curve shape of GaAs photocathodes[J]. Spectrosc. Spectral Anal., 2007, 27(8):1465-1468.(in Chinese) http://www.cqvip.com/QK/90993X/200708/25252972.html
[22] NIU J, ZHANG Y J, CHANG B K, et al.. Influence of varied doping structure on photoemissive property of photocathode[J]. Chin. Phys. B, 2011, 20(4):044209. doi: 10.1088/1674-1056/20/4/044209
[23] 张益军. 变掺杂GaAs光电阴极研制及其特性评估[D]. 南京: 南京理工大学, 2012. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2275823

ZHANG Y J. Design and characteristic evaluation of varied doping GaAs photocathode[D]. Nanjing: Nanjing University of Science and Technology, 2012. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2275823