[1] HUANG D, SWANSON E A, LIN C P. Optical coherence tomography[J]. Science, 1991, 254(5035):1178-1181. doi: 10.1126/science.1957169
[2] FEICHERL A F, DREXLERL W, HITZENBERGERL C K, et al.. Optical coherence tomography-principles and applications[J]. Reports on Progress in Physics, 2003, 66(2003):239-303. http://d.old.wanfangdata.com.cn/Periodical/xsjs201505018
[3] JIANG Y, TOMOV I, WANG Y M, et al.. Second-harmonic optical coherence tomography[J]. Optics Letters, 2004, 29(10):1090-1092. doi: 10.1364/OL.29.001090
[4] ROLLINS A M, KULKARNI M D, YAZDANFAR S, et al.. In vivo video rate optical coherence tomography[J]. Opt. Express, 1998, 3(6):219-229. doi: 10.1364/OE.3.000219
[5] LIN Y, CHANG CH. Characteristics of two-segment lensed fiber collimator[J]. Microwave & Optical Technology Letters, 2010, 52(8):1846-1848. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=11905f9e84b2372e91099b5fed3779e9
[6] SWANSON E, PETERSEN C L, MCNAMARA E, et al.. Ultra-small optical probes, imaging optics, and methods for using same: US, US6445939[P]. 2002.
[7] REED W A, YAN M F, SCHNITZER M J. Gradient-index fiber-optic microprobes for minimally invasive in vivo low-coherence interferometry[J]. Opt. Lett., 2002, 27:1794-1796 doi: 10.1364/OL.27.001794
[8] JAFRI M S, FARHANG S, TANG R S, et al.. Optical coherence tomography in the diagnosis and treatment of neurological disorders[J]. Biomed. Opt., 2005, 10(5):051603. doi: 10.1117/1.2116967
[9] MAO Y X, CHANG S D, SHERIF S, et al.. Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging[J]. Applied Optics, 2007, 46(23):5887-5894 doi: 10.1364/AO.46.005887
[10] MAO Y X, CHANG S D, FLUERARU C. Fiber lens for ultra-small probes used in optical coherent tomography[J]. Biomedical Science and Engineering, 2010, 3:27-34. doi: 10.4236/jbise.2010.31004
[11] JUNG W, BENALCAZAR W, AHNAD A, et al.. Numerical analysis of gradient index lens based optical coherence tomography imaging probes[J]. Journal of Biomedical Optics, 2010, 15(6):066027. doi: 10.1117/1.3523374
[12] LORENSER D, YANG X, SAMPSON D D. Accurate modeling and design of gradient-index fiber probes for optical coherence tomography using the beam propagation method[J]. IEEE Photonics Journal, 2013, 5(2):3900015. doi: 10.1109/JPHOT.2013.2250939
[13] MCLAUGHLIN R A, QUIRK B C, CURATOLO A, et al.. Imaging of breast cancer with optical coherence tomography needle probes:feasibility and initial results[J]. IEEE J. Sel. Top. Quantum Electron, 2012, 18(3):1184-1191. doi: 10.1109/JSTQE.2011.2166757
[14] PFEIER T, SCHMITTR R, KONIG N, et al. Interferometric measurement of injection nozzles using ultra-small fiber-optical probes[J]. Chin. Opt. Lett., 2011, 9(7):071202. doi: 10.3788/COL
[15] SCHMITT R, PFEIER T, DEPIEREUX F, et al.. Novel fiber-optical interferometer with miniaturized probe for in-hole measurements[J]. Optoelectron. Lett., 2008, 4:140-142. doi: 10.1007/s11801-008-7098-3
[16] WANG C, MAO Y X, FANG C, et al.. Analytical method for designing gradient-index fiber probes[J]. Optical Engineering, 2011, 50(9):094202-1-9. doi: 10.1117/1.3626206
[17] WANG C, MAO Y X, TANG Z, et al.. Numerical analysis of GRIN lens based miniature probes for optical coherence tomography[J]. Opt. Precision Eng., 2011, 19(9):2300-2307. doi: 10.3788/OPE.
[18] WANG C, MAO Y X, TANG Z, et al.. Numerical simulation of gradient-index fibre probe and its properties of light propagation[J]. Chinese Physics B, 2011, 20(11):114218-1-7. doi: 10.1088/1674-1056/20/11/114218
[19] 王驰, 毕书博, 王利, 等.超小自聚焦光纤探头研究用场追迹数值模拟技术[J].物理学报, 2013, 62(2):024217. http://d.old.wanfangdata.com.cn/Periodical/wlxb201302045

WANG C, BI S B, WANG L, et al.. Field-tracing based numerical simulation technique for the investigation of ultra-small self-focusing optical fiber probe[J]. Acta Physica Sinica, 2013, 62(2):024217.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/wlxb201302045
[20] WANG C, BI S B, XIA X Q, et al.. Field-tracing modeling of the ultra-small gradient-index fiber probe[J]. Optik, 2013, 124:6437-6443. doi: 10.1016/j.ijleo.2013.05.033
[21] WANG C, BI S B, XIA X Q, et al.. Further analysis of focusing performance of an ultra-small gradient-index fiber probe[J]. Optical Engineering, 2014, 53(1):013106. doi: 10.1117/1.OE.53.1.013106
[22] 王驰, 许婷婷, 毕书博, 等.测量自聚焦光纤透镜聚焦常数的曲线拟合算法[J].光学精密工程, 2015, 23(12):3309-3315. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201512004

WANG C, XU T T, BI S B, et al.. Curve-fitting algorithm of measuring focusing constant of gradient-index fiber lens[J]. Opt. Precision Eng., 2015, 23(12):3309-3315.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201512004
[23] WANG C, ZHANG F, BI S B, et al.. Fabrication method of ultra-small gradient-index fiber probe[J]. Advances in Manufacturing, 2014, 2(4):327-332. doi: 10.1007/s40436-014-0089-7
[24] KOKODⅡ N G. Knife gauge for measurement of the intensity distribution in a beam of optical radiation[J]. Measurement Techniques, 2003, 46(3):240-244. doi: 10.1023/A:1024005127686
[25] BALLEGAARD H P, ANDERSEN B, BOEGH N S. Multibeam internal drum scanning system: WO, WO 2005012978 A1[P]. 2005.
[26] CUI X Q, XIN H, WU J G, et al.. Slanted Hole Array Beam Profiler(SHArP)-a high-resolution portable beam profiler based on a slanted linear aperture array[J]. Optics Letters, 2006, 31(21):3161-3163. doi: 10.1364/OL.31.003161
[27] PANG M, RONG J, YUAN X W, et al.. Research on the measurement method for a large laser beam profile based on CCD diffuse transmission imaging[J]. Measurement Science & Technology, 2013, 24(12):125202. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1ce67455adee571fc1401a3755816137
[28] BI S B, WANG C, ZHU J, et al.. Detection method for the focusing performance of small fiber lens[C]. International Conference on Optical and Photonics Engineering, 2017: 104491E.
[29] WANG C, SUN J M, SUN F, et al.. Coupling efficiency of ultra-small gradient-index fiber probe[J]. Optics Communications, 2017, 389:265-269. doi: 10.1016/j.optcom.2016.12.051
[30] 刘震, 王雪梅, 倪文波.基于MEMS传感器的高精度姿态角测量研究[J].中国测试, 2017, 43(2):6-12. http://d.old.wanfangdata.com.cn/Periodical/zgcsjs201702002

LIU Z, WANG X, NI W. Research on attitude angle measurement with high precision based on MEMS sensors[J]. China Measurement & Test, 2017, 43(2):6-12.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zgcsjs201702002
[31] 程琳, 刘影, 田彦.基于最小均方误差的全光纤电流互感器调制相位扰动补偿方法研究[J].中国测试, 2016, 42(12):116-120. doi: 10.11857/j.issn.1674-5124.2016.12.024

CHENG L, LIU Y, TIAN Y. Research on modulation phase disturbance compensation method for FOCT based on minimum mean square error[J]. China Measurement & Test, 2016, 42(12):116-120.(in Chinese) doi: 10.11857/j.issn.1674-5124.2016.12.024
[32] 蔡苹杨, 黄承韫, 安金玲.基于纳米氧化铟表面的二硫化碳传感器研究[J].中国测试, 2013, 39(5):42-45. http://www.cnki.com.cn/Article/CJFDTOTAL-SYCS201305011.htm

CAI P Y, HUANG C Y, AN J L, et al.. Research of gas sensor based on cataluminescence emission on the surface of nano-In2O3[J]. China Measurement & Test, 2013, 39(5):42-45.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SYCS201305011.htm
[33] 叶廷东, 程韬波, 刘桂雄, 等.MEMS气敏传感信息的动态预测补偿方法[J].中国测试, 2014, 40(4):1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20142014092200108502

YE T D, CHENG T B, LIU G X, et al.. Dynamic predictive compensation method of MEMS gas sensing information[J]. China Measurement & Test, 2014, 40(4):1-5.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20142014092200108502
[34] 胡林亭, 李佩军, 姚志军.提高外场重频激光光斑测量距离的研究[J].液晶与显示, 2016, 31(12):1137-1142. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201612007

HU L T, LI P J, YAO ZH J. Improvement of the measuring distance of repetitive-frequency laser spot in field[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(12):1137-1142.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201612007
[35] 王嘉成, 孙海江, 刘培勋, 等.高分辨率多传感器融合图像跟踪系统的设计与实现[J].液晶与显示, 2016, 31(8):825-830. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201608014

WANG J CH, SUN H J, LIU P X, et al.. Design and implementation of high resolution multi-sensors fusion tracking system[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(8):825-830.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201608014
[36] 丁鹏, 张叶, 刘让, 等.结合形态学和Canny算法的红外弱小目标检测[J].液晶与显示, 2016, 31(8):793-800. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201608010

DING P, ZHANG Y, LIU R, et al.. Infrared small target detection based on adaptive Canny algorithm and morphology[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(8):793-800.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201608010
[37] 王玉坤, 贾娜, 张锐.激光通信成像光斑处理方法研究[J].液晶与显示, 2017, 32(9):736-740. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201709010

WANG Y K, JIA N, ZHANG R. Laser communication spots imaging process method[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(9):736-740.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201709010
[38] 吴春婷, 李贺, 蔡继兴, 等.采用马赫-曾德尔干涉法测量单晶硅在线应力损伤[J].光学精密工程, 2017, 25(5):1395-1401. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201705033

WU CH T, LI H, CAI J X, et al.. Measurement of real-time stress damage of monocrystal silicon by Mach-Zehnder interferometry[J]. Opt. Precision Eng., 2017, 25(5):1395-1401.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201705033
[39] 李颖奎, 齐冀, 张洁, 等.基于液晶空间光调制器的变倍率激光扩束技术研究[J].液晶与显示, 2018, 33(9):764-771. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201809007

LI Y K, QI J, ZHANG J, et al.. Laser beam expanding technology based on liquid crystal spatial light modulator[J]. Chinese Journal of Liquid Crystals and Display, 2018, 33(9):764-771.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201809007
[40] 孔晓波, 刘丽娟, 刘永刚, 等.基于液晶/聚合物光栅的可调谐双波长有机激光器[J].液晶与显示, 2018, 33(1):49-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjyxs201801007

KONG X B, LIU L J, LIU Y G, et al.. Tunable dual-wavelength organic laser based on holographic polymer dispersed liquid crystal grating[J]. Chinese Journal of Liquid Crystals and Display, 2018, 33(1):49-54.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjyxs201801007
[41] 乌日娜, 王兴, 杨帆, 等.染料掺杂手性向列相液晶器件中实现随机激光辐射[J].液晶与显示, 2018, 33(6):464-468. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201806003

WU R N, WANG X, YANG F, et al.. Realization of random lasing in dye-doped chiralnematic liquid crystal[J]. Chinese Journal of Liquid Crystals and Display, 2018, 33(6):464-468.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201806003
[42] 吴迪, 葛廷武, 秦文斌, 等.光纤激光器故障模式分析[J].发光学报, 2018, 39(7):1002-1007.. http://d.old.wanfangdata.com.cn/Periodical/fgxb201807017

WU D, GE T W, QIN W B, et al.. Fault mode analysis on fiber laser[J]. Chinese Journal of Luminesecence, 2018, 39(7):1002-1007.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201807017
[43] 顾宏灿, 黄俊斌, 程玲, 等.20~1250 Hz光纤激光加速度传感系统设计[J].中国光学, 2017, 10(4):469-476. http://www.chineseoptics.net.cn/CN/abstract/abstract9512.shtml

GU H C, HUANG J B, CHENG L, et al.. 20-1250 Hz fiber laser acceleration sensing system[J]. Chinese Optics, 2017, 10(4):469-476.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9512.shtml
[44] 谢检来, 郝永芹, 张家斌, 等.一种具有低折射率的高对比度光栅反射镜的设计[J].发光学报, 2018, 39(6):855-861. http://d.old.wanfangdata.com.cn/Periodical/fgxb201806016

XIE J L, HAO Y Q, ZHANG J B, et al.. Design of high contrast grating mirror with low index grating layer[J]. Chinese Journal of Luminesecence, 2018, 39(6):855-861.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201806016
[45] 张磊, 刘东, 师途, 等.光学自由曲面面形检测技术[J].中国光学, 2017, 10(3):283-299. http://www.chineseoptics.net.cn/CN/abstract/abstract9523.shtml

ZHANG L, LIU D, SHI T, et al.. Optical free-form surfaces testing technologies[J]. Chinese Optics, 2017, 10(3):283-299.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9523.shtml
[46] 吕强, 李文昊, 巴音贺希格, 等.基于衍射光栅的干涉式精密位移测量系统[J].中国光学, 2017, 10(1):39-50. http://www.chineseoptics.net.cn/CN/abstract/abstract9490.shtml

LV Q, LI W H, BAYINHEXIGE, et al.. Interferometric precision displacement measurement system based on diffraction grating[J]. Chinese Optics, 2017, 10(1):39-50.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9490.shtml