[1] TORABI S F, LU Y. Functional DNA nanomaterials for sensing and imaging in living cells[J]. Curr. Opin Biotechnol., 2014, 28:88-95. doi: 10.1016/j.copbio.2013.12.011
[2] LI J, MO L, LU C H, et al.. Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications[J]. Chem. Soc. Rev., 2016, 45(5):1410-1431. doi: 10.1039/C5CS00586H
[3] LIANG H, ZHANG X B, LV Y, et al.. Functional DNA-containing nanomaterials:cellular applications in biosensing, imaging, and targeted therapy[J]. Acc Chem. Res., 2014, 47(6):1891-1901. doi: 10.1021/ar500078f
[4] MIAO P, TANG Y, WANG B, et al.. Near-infrared Ag2S quantum dots-based DNA logic gate platform for miRNA diagnostics[J]. Anal. Chem., 2016, 88(15):7567-7573. doi: 10.1021/acs.analchem.6b01044
[5] CHENG W, YAN W, MIAO P. TNF-α responsive DNA star trigon formation from four hairpin probes and the analytical application[J]. Sci. China. Chem., 2017, 60(3):405-409. doi: 10.1007/s11426-016-0259-4
[6] CHAKRABORTY K, VEETIL A T, JAFFREY S R, et al.. Nucleic acid-based nanodevices in biological imaging[J]. Annu. Rev. Biochem., 2016, 85(1):349-373. doi: 10.1146/annurev-biochem-060815-014244
[7] LI J, CHENG F, HUANG H, et al.. Nanomaterial-based activatable imaging probes:from design to biological applications[J]. Chem. Soc. Rev., 2015, 44(21):7855-7880. doi: 10.1039/C4CS00476K
[8] LUBY B M, CHARRON D M, MACLAUGHLIN C M, et al.. Activatable fluorescence:from small molecule to nanoparticle[J]. Adv. Drug Deliv. Rev., 2016, 113:97-121. http://cn.bing.com/academic/profile?id=a7aeb37e5bac1824f6aa3ca6fbc1128f&encoded=0&v=paper_preview&mkt=zh-cn
[9] HU R, ZHANG X B, KONG R M, et al.. Nucleic acid-functionalized nanomaterials for bioimaging applications[J]. J. Mater. Chem., 2011, 21(41):16323-16334. doi: 10.1039/c1jm12588e
[10] ZHENG J, YANG R H, SHI M L, et al.. Rationally designed molecular beacons for bioanalytical and biomedical applications[J]. Chem. Soc. Rev., 2015, 44(10):3036-3055. doi: 10.1039/C5CS00020C
[11] FARRERA C, ANDON F T, FELIU N. Carbon nanotubes as optical sensors in biomedicine[J]. ACS Nano, 2017, 11(11):10637-10643. doi: 10.1021/acsnano.7b06701
[12] ZHU X, LIU Y, LI P, et al.. Applications of graphene and its derivatives in intracellular biosensing and bioimaging[J]. Analyst, 2016, 141(15):4541-4553. doi: 10.1039/C6AN01090C
[13] PENG H Y, TANG H, JIANG J H. Recent progress in gold nanoparticle-based biosensing and cellular imaging[J]. Sci. China Chem., 2016, 59(7):783-793. doi: 10.1007/s11426-016-5570-7
[14] HILDEBRANDT N, SPILLMANN C M, ALGAR W R, et al.. Energy transfer with semiconductor quantum dot bioconjugates:a versatile platform for biosensing, energy harvesting, and other developing applications[J]. Chem. Rev., 2017, 117(2):536-711. doi: 10.1021/acs.chemrev.6b00030
[15] ZHANG C, DING C, XIANG D, et al.. DNA functionalized fluorescent quantum dots for bioanalytical applications[J]. Chinese J. Chem., 2016, 34(3):317-325. doi: 10.1002/cjoc.v34.3
[16] SANTANGELO P J. Molecular beacons and related probes for intracellular RNA imaging[J]. WIREs Nanomedicine and Nanobiotechnology, 2010, 2(1):11-19. doi: 10.1002/wnan.52
[17] 杨立敏, 刘波, 李娜, 等.纳米荧光探针用于核酸分子的检测及成像研究[J].化学学报, 2017, 75:1047-1060. http://www.cnki.com.cn/Article/CJFDTotal-HXXB201711003.htm

YANG L M, LIU B, LI N, et al.. Fluorescent nanoprobe for detection and imaging of nucleic acid molecules[J]. Acta Chim. Sinica, 2017, 75:1047-1060.(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-HXXB201711003.htm
[18] SEFEROS D S, GILJOHANN D A, HILL H D, et al..Nano-flares:probes for transfection and mRNA detection in living cells[J]. J. Am. Chem. Soc., 2007, 129(50):15477-15479. doi: 10.1021/ja0776529
[19] CHOI C K K, LI J M, WEI K C, et al.. A gold@polydopamine core-shell nanoprobe for long-term intracellular detection of microRNAs in differentiating stem cells[J]. Methods Mol. Biol., 2017, 1570:155-164. doi: 10.1007/978-1-4939-6840-4
[20] LI N, CHANG C, PAN W, et al.. A multicolor nanoprobe for detection and imaging of tumor-related mRNAs in living cells[J]. Angew Chem. Int. Ed., 2012, 51(30):7426-7430. doi: 10.1002/anie.201203767
[21] LI J L, ZHONG X Q, CHENG F F, et al.. One-pot synthesis of aptamer-functionalized silver nanoclusters for cell-type-specific imaging[J]. Anal. Chem., 2012, 84:4140-4146. doi: 10.1021/ac3003402
[22] HE X, ZENG T, LI Z, et al.. Catalytic molecular imaging of microRNA in living cells by DNA-programmed nanoparticle disassembly[J]. Angew Chem. Int. Ed., 2016, 55(9):3073-3076. doi: 10.1002/anie.201509726
[23] YANG Y, HUANG J, YANG X, et al.. FRET nanoflares for intracellular mRNA detection:avoiding false positive signals and minimizing effects of system fluctuations[J]. J. Am. Chem. Soc., 2015, 137(26):8340-8343. doi: 10.1021/jacs.5b04007
[24] CHEN J J, TANG L J, CHU X, et al.. Enzyme-free, signal-amplified nucleic acid circuits for biosensing and bioimaging analysis[J]. Analyst, 2017, 142(7):3048-3061. http://cn.bing.com/academic/profile?id=2d3d9e3d176fe3a5cba2513c7ffb1f21&encoded=0&v=paper_preview&mkt=zh-cn
[25] BI S, YUE S, ZHANG S. Hybridization chain reaction:a versatile molecular tool for biosensing, bioimaging, and biomedicine[J]. Chem. Soc. Rev., 2017, 46(14):4281-4298. doi: 10.1039/C7CS00055C
[26] WU Z, LIU G Q, YANG X L, et al.. Electrostatic nucleic acid nanoassembly enables hybridization chain reaction in living cells for ultrasensitive mRNA Imaging[J]. J. Am. Chem. Soc., 2015, 137(21):6829-6836. doi: 10.1021/jacs.5b01778
[27] YANG D W, TANG Y G, MIAO P. Hybridization chain reaction directed DNA superstructures assembly for biosensing applications[J]. TrAC Trends in Analytical Chemistry, 2017, 94:1-13. doi: 10.1016/j.trac.2017.06.011
[28] MENG H M, LIU H, KUAI H, et al..Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy[J]. Chem. Soc. Rev., 2016, 45(9):2583-2602. doi: 10.1039/C5CS00645G
[29] YANG D, TANG Y, GUO Z, et al.. Proximity aptasensor for protein detection based on an enzyme-free amplification strategy[J]. Mol. Bio. Syst., 2017, 13:1936-1939. http://cn.bing.com/academic/profile?id=2cc603ee3e16511018446dc02f88fb6c&encoded=0&v=paper_preview&mkt=zh-cn
[30] 靳贵晓, 李娟, 杨黄浩.核酸适体的筛选及其在生物医学领域的研究进展[J].福州大学学报, 2016, 44(6):919-934. https://mall.cnki.net/qikan-SPJX201610046.html

JIN G X, LI J, YANG H H. Research progress of aptamer screening and its application in biomedicine[J]. Journal of Fuzhou University, 2016, 44(6):919-934.(in Chinese) https://mall.cnki.net/qikan-SPJX201610046.html
[31] ZHANG H, LI F, DEVER B, et al.. DNA-mediated homogeneous binding assays for nucleic acids and proteins[J]. Chem. Rev., 2013, 113(4):2812-2841. doi: 10.1021/cr300340p
[32] XING H, WONG N Y, XIANG Y, et al.. DNA aptamer functionalized nanomaterials for intracellular analysis, cancer cell imaging and drug delivery[J]. Curr. Opin. Chem. Biol., 2012, 16:429-435. doi: 10.1016/j.cbpa.2012.03.016
[33] SUN H G, TAN W H, ZU Y L. Aptamers:versatile molecular recognition probes for cancer detection[J]. Analyst, 2016, 141(2):403-415. doi: 10.1039/C5AN01995H
[34] LU D, HE L, ZHANG G, et al.. Aptamer-assembled nanomaterials for fluorescent sensing and imaging[J]. Nanophotonics, 2017, 6(1):109-121. http://cn.bing.com/academic/profile?id=6032d950d7888ccbaef6076faab90cde&encoded=0&v=paper_preview&mkt=zh-cn
[35] DONG J T, ZHAO M P. In-vivo fluorescence imaging of adenosine 5'-triphosphate[J]. Trends in Analytical Chemistry, 2016, 80:190-203. doi: 10.1016/j.trac.2016.03.020
[36] 黄子珂, 刘超, 付强强, 等.核酸适配体荧光探针在生化分析和生物成像中的研究进展[J].应用化学, 2018, 35(1):28-39. doi: 10.11944/j.issn.1000-0518.2018.01.170363

HUANG Z K, LIU CH, FU Q Q, et al.. Aptamer-based fluorescence probe for bioanalysis and bioimaging[J]. Chinese Journal of Applied Chemistry, 2018, 35(1):28-39. (in Chinese) doi: 10.11944/j.issn.1000-0518.2018.01.170363
[37] WANG J, ZHU G, YOUM, et al.. Assembly of aptamer on gold switch nanorods probes for and photosensitizer targeted photothermal and photodynamic cancer therapy[J]. ACS Nano, 2012, 6(6):5070-5077. doi: 10.1021/nn300694v
[38] CHEN T T, TIAN X, LIU C L, et al.. Fluorescence activation imaging of cytochrome c released from mitochondria using aptameric nanosensor[J]. J. Am. Chem. Soc., 2015, 137(2):982-989. doi: 10.1021/ja511988w
[39] KIM J K, CHOI K J, LEE M, et al.. Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer-and microRNA-221 molecular beacon-conjugated nanoparticle[J]. Biomaterials, 2012, 33(1):207-217. doi: 10.1016/j.biomaterials.2011.09.023
[40] LIU J, CAO Z, LU Y. Functional nucleic acid sensors[J]. Chem. Rev., 2009, 109:1948-1998. doi: 10.1021/cr030183i
[41] ZHOU W H, LIU J W. Multi-metal-dependent nucleic acid enzymes[J]. Metallomics, 2018, 10(11):30-48. http://cn.bing.com/academic/profile?id=5b551e3bf84ea3ef42139801d851002b&encoded=0&v=paper_preview&mkt=zh-cn
[42] MCGHEE C E, LOH K Y, LU Y. DNAzyme sensors for detection of metal ions in the environment and imaging them in living cells[J]. Curr. Opin Biotechnol., 2017, 45:191-201. doi: 10.1016/j.copbio.2017.03.002
[43] MOKANY E, BONE S M, YOUNG P E, et al.. MNAzymes, a versatile new class of nucleic acid enzymes that can function as biosensors and molecular switches[J]. J. Am. Chem. Soc., 2010, 132(3):1051-1059. doi: 10.1021/ja9076777
[44] SONG P, XIANG Y, XING H, et al.. Label-free catalytic and molecular beacon containing an abasic site for sensitive fluorescent detection of small inorganic and organic molecules[J]. Anal. Chem., 2012, 84(6):2916-2922. doi: 10.1021/ac203488p
[45] LI L, FENG J, FAN Y, et al.. Simultaneous imaging of Zn2+ and Cu2+ in living cells based on DNAzyme modified gold nanoparticle[J]. Anal. Chem., 2015, 87(9):4829-4835. doi: 10.1021/acs.analchem.5b00204
[46] YANG Y, HUANG J, YANG X, et al.. Aptazyme-gold nanoparticle sensor for amplified molecular probing in living cells[J]. Anal. Chem., 2016, 88(11):5981-5987. doi: 10.1021/acs.analchem.6b00999
[47] PENG H Y, LI X F, ZHANG H Q, et al.. A microRNA-initiated DNAzyme motor operating in living cells[J]. Nat. Commun., 2017, 8:14378. doi: 10.1038/ncomms14378
[48] YANG Y, HUANG J, YANG X, et al.. Gold nanoparticle based hairpin-locked-DNAzyme probe for amplified miRNA imaging in living cells[J]. Anal. Chem., 2017, 89(11):5850-5856. doi: 10.1021/acs.analchem.7b00174
[49] CHEN F, BAI M, CAO K, et al.. Fabricating MnO2 nanozymes as intracellular catalytic DNA circuit generators for versatile imaging of base-excision repair in living cells[J]. Adv. Funct. Mater., 2017, 27(45):1702748. doi: 10.1002/adfm.v27.45
[50] HE D G, HE X, YANG X, et al.. A smart ZnO@polydopamine-nucleic acid nanosystem for ultrasensitive live cell mRNA imaging by the target-triggered intracellular self-assembly of active DNAzyme nanostructures[J]. Chemical Science, 2017, 8(4):2832-2840. doi: 10.1039/C6SC04633A