[1] AGRAWAL G. Nonlinear Fiber Optics[M]. 5th ed., Amsterdam:Academic Press, 2013:397-457.
[2] CHRAPLYVY A R. Limitation on lightwave communication imposed by optical fiber nonlinarities[J]. J. Lightw. Technol., 1990, 8(10):1548-1557. doi: 10.1109/50.59195
[3] GONG Z B, LU X, SHI K B, et al.. Nonlinear propagation of optical frequency comb and its application in phase noise detection[J]. Chinese Optics, 2015, 8(1):39-44. http://www.chineseoptics.net.cn/CN/abstract/abstract9259.shtml
[4] TAMILARASAN I, SAMINATHAN B, MURUGAPPAN M. Improved fiber nonlinearity mitigation in dispersion managed optical OFDM links[J]. Optics Communications, 2017, 385:87-91. doi: 10.1016/j.optcom.2016.10.045
[5] ELLIS A, MCCARTHY M, AL KHATEEB M, et al.. Performance limits in optical communications due to fiber nonlinearity[J]. Advances in Optics and Photonics, 2017, 9(3):429-503. doi: 10.1364/AOP.9.000429
[6] AL-KHATEEB M A Z, IQBAL M A, TAN M M, et al.. Analysis of the nonlinear Kerr effects in optical transmission systems that deploy optical phase conjugation[J]. Optics Express, 2018, 26(3):3145-3160. doi: 10.1364/OE.26.003145
[7] INOUE K. Four-wave mixing in an optical fiber in the zero-Dispersion wavelength region[J]. J. Lightw. Technol., 1992, 10(11):1553-1561. doi: 10.1109/50.184893
[8] FORZATI M, BERNTSON A, MARTENSSON J. Performance analysis of single-MZM APRZ transmitters[J]. J. Lightw. Technol., 2006, 24(5):2006-2014. doi: 10.1109/JLT.2006.871024
[9] FORZATI M, BERNTSON A, MARTENSSON J. Asynchronous phase modulation for the suppression of IFWM[J]. J. Lightw. Technol., 2007, 25(10):2969-2975. doi: 10.1109/JLT.2007.904414
[10] PECHENKIN V, FAIR IVAN J. On four-wave mixing suppression in dispersion-managed fiber-optic OFDM systems with an optical phase conjugation module[J]. J. Lightw. Technol., 2011, 29(11):1678-1691. doi: 10.1109/JLT.2011.2138677
[11] DU J, TENG Z, SHEN N. Semi-analytic modeling of FWM noise in dispersion-managed DWDM systems with DQPSK/DPSK/OOK channels[J]. Optics Communications, 2016, 358:180-189. doi: 10.1016/j.optcom.2015.07.052
[12] CRUZ P, ALVES T, CARTAXO A. Virtual carrier-assisted DD-MB-OFDM schemes for UDWDM metro-access networks with improved tolerance to four-wave mixing[J]. J. Lightw. Technol., 2017, 35(20):4468-4478. doi: 10.1109/JLT.2017.2743818
[13] JIANG L, YUAN X, CUI Y, et al.. Optical bistability and four-wave mixing in a hybrid optomechanical system[J]. Physics Letters A, 2017, 381(38):3289-3294. doi: 10.1016/j.physleta.2017.08.045
[14] SINGH G, SINGH M. Spectral bandwidth-efficient four-wave mixing minimization scheme for C-band dense wavelength division multiplexed system[J]. Optical Engineering, 2017, 56(7):076115. doi: 10.1117/1.OE.56.7.076115
[15] ABD T, ALJUNID S, FADHIL H, et al.. Impact of multi-diagonal code on high-speed spectral amplitude coding optical code division multiple-access networks[J]. Arabian Journal for Science and Engineering, 2012, 38(9):2389-2397.
[16] SAFAR A, ALJUNID S, ARIEF A, et al.. Minimizing correlation effect using zero cross correlation code in spectral amplitude coding optical code division multiple access[J]. Optical Review, 2012, 19(1):20-24.
[17] ELTAIF T, SHALABY H, HAJI SHAARI S, et al.. Analytical comparison of optical code-division multiple-access systems with and without a successive interference cancellation scheme using modified prime-sequence codes[J]. Optical Engineering, 2008, 47(9):095001. doi: 10.1117/1.2977525
[18] SELEEM H, BENTRCIA A, FATHALLAH H. Penalised and doubly-penalised parallel/successive interference cancellation multi-user detectors for asynchronous upstream optical code division multiple access passive optical network[J]. IET Communications, 2014, 8(5):626-638. doi: 10.1049/iet-com.2013.0064
[19] ALSOWAIDI N, ELTAIF T, MOKHTAR M. Performance analysis of SAC optical PPM-CDMA system-based interference rejection technique[J]. Journal of Optical Communications, 2016, 37(1):87-92.
[20] ALSOWAIDI N, ELTAIF T, MOKHTAR M. A review on successive interference cancellation-based optical PPM-CDMA signaling[J]. Journal of Optical Communications, 2017, 38(1):57-62.
[21] KITAYAMA K, WANG X, WADA N. OCDMA over WDM PON-solution path to gigabit-symmetric FTTH[J]. J. Lightw. Technol., 2006, 24(4):1654-1662. doi: 10.1109/JLT.2006.871030
[22] WANG X, WADA N, MIYAZAKI T, et al.. Field Trial of 3-WDM 10-OCDMA 10.71-Gb/s asynchronous WDM/DPSK-OCDMA using hybrid E/D without FEC and optical thresholding[J]. J. Lightw. Technol., 2007, 25(1):207-215. doi: 10.1109/JLT.2006.887186
[23] CHOI Y K, HANAWA M, WANG X, et al.. Upstream transmission of WDM/OCDM-PON in a loop-back configuration with remotely supplied short optical pulses[J]. Journal of Optical Communications and Networking, 2013, 5(3):183-189.
[24] DENG Y H, FOK M P, PRUCNAL P R, et al.. All-optical code routing in interconnected optical CDMA and WDM ring networks[J]. Optics Letters, 2010, 35(21):3628-3630. doi: 10.1364/OL.35.003628
[25] RODRIGUEZ DE LOS SANTOS G, HERNANDEZ J A, URUENA M, et al.. Study of a hybrid OCDMA-WDM segmented ring for metropolitan area networks[C]. 12th International Conference on High Performance Switching and Routing(HPSR), 2011: 83-88.
[26] CHEN H, XIAO SH L, ZHU M, et al.. Hybrid WDMA/OCDM system with the capability of encoding multiple wavelength channels by employing one encoder and one corresponding optical code[J]. Chinese Optics Letters, 2010, 8(8):745-748. doi: 10.3788/COL
[27] BOSCO, CARENA A, CURRI V, et al.. On the use of NRZ, RZ, and CSRZ modulation at 40 Gb/s with narrow DWDM channel spacing[J]. J. Lightw. Technol., 2002, 20(9):1694-1704. doi: 10.1109/JLT.2002.806309
[28] RAMASWAMI R, SIVARAJAN K, SASAKI G. Optical Networks[M]. 3rd Ed., Amsterdam:Elsevier/Morgan Kaufmann, 2010:264-320.