[1] MULLIN R. Exelixis restructures:BIOTECH:cancer drug firm shifts resources to development and cuts 40% of jobs[J]. Chemical & Engineering News, 2010, 88(11):12. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0222121237/
[2] VALIULIS A V. The advanced structural materials for living beings implants[J]. Journal of Vibroengineering, 2007, 9(4):64-72.
[3] CRAWFORD G H. The role of patch testing in the evaluation of orthopedic implant-related adverse effects:current evidence does not support broad use[J]. Dermatitis, 2013, 24(3):99-103. doi: 10.1097/DER.0b013e3182948251
[4] KZHYSHKOWSKA J, GUDIMA A, RIABOV V, et al.. Macrophage responses to implants:prospects for personalized medicine[J]. Journal of Leukocyte Biology, 2015, 98(6):953-962. doi: 10.1189/jlb.5VMR0415-166R
[5] VELNAR T, BUNC G, KLOBUCAR R, et al.. Biomaterials and host versus graft response:a short review[J]. Bosnian Journal of Basic Medical Sciences, 2016, 16(2):82-90.
[6] 刘存平, 刘勇, 赖啸.材料的生物相容性评价方法和发展趋势[J].科技风, 2016(1):23. doi: 10.3969/j.issn.1671-7341.2016.01.020

LIU C P, LIU Y, LAI X. Evaluated methods and developmental trend of biocompatibility of biomaterials[J]. Technology Wind, 2016(1):23.(in Chinese) doi: 10.3969/j.issn.1671-7341.2016.01.020
[7] MUSKOVICH M, BETTINGER C J. Biomaterials-based electronics:polymers and interfaces for biology and medicine[J]. Advanced Healthcare Materials, 2012, 1(3):248-266. doi: 10.1002/adhm.201200071
[8] GHADIALLY R. Epidermal stem cells[J]. Advances in Dermatology, 2005, 21:335-355. doi: 10.1016/j.yadr.2005.04.003
[9] CURRAN J M, CHEN R, HUNT J A. Controlling the phenotype and function of mesenchymal stem cells in vitro by adhesion to silane-modified clean glass surfaces[J]. Biomaterials, 2005, 26(34):7057-7067. doi: 10.1016/j.biomaterials.2005.05.008
[10] 彭荣.高分子表面微图案技术研究干细胞形状、尺寸和密度对其分化的影响[D].上海: 复旦大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10246-1013103068.htm

PENG R. Effects of cell shape, spreading size and cell density on differentiation of stem cells on micropatterned surfaces of a polymeric hydrogel[D]. Shanghai: Fudan University, 2012.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10246-1013103068.htm
[11] HARRISON R G. The cultivation of tissues in extraneous media as a method of morpho-genetic study[J]. The Anatomical Record, 1912, 6(4):181-193. doi: 10.1002/(ISSN)1097-0185
[12] BRUNETTE D M, TENGVALL P, TEXTOR M, et al.. Titanium in Medicine:Material Science, Surface Science, Engineering, Biological Responses, and Medical Applications[M]. New York:Springer, 2001.
[13] CUNHA A, ZOUANI O F, PLAWINSKI L, et al.. Human mesenchymal stem cell behavior on femtosecond laser-textured Ti-6Al-4V surfaces[J]. Nanomedicine, 2015, 10(5):725-739. doi: 10.2217/nnm.15.19
[14] DASKALOVA A, TRIFONOV A, BLIZNAKOVA I, et al.. Selective cell response on natural polymer bio-interfaces textured by femtosecond laser[J]. Applied Physics A, 2018, 124(2):207. doi: 10.1007/s00339-018-1628-z
[15] ULMEANU M, SIMA L E, URSESCU D, et al.. Cell adhesion response on femtosecond laser initiated liquid assisted silicon surface[J]. Current Topics in Medicinal Chemistry, 2014, 14(5):624-629. doi: 10.2174/1568026614666140118204946
[16] YAO X, PENG R, DING J D. Cell-material interactions revealed via material techniques of surface patterning[J]. Advanced Materials, 2013, 25(37):5257-5286. doi: 10.1002/adma.201301762
[17] WATT F M, HUCK W T S. Role of the extracellular matrix in regulating stem cell fate[J]. Nature Reviews Molecular Cell Biology, 2013, 14(8):467-473. doi: 10.1038/nrm3620
[18] 孟维艳.纯钛表面微米-纳米微结构的构建及生物学研究[D].长春: 吉林大学, 2010. http://cdmd.cnki.com.cn/article/cdmd-10183-2011014697.htm

MENG W Y. The biological study and construction of micro-nano titanium surface[D]. Changchun: Jilin University, 2010.(in Chinese) http://cdmd.cnki.com.cn/article/cdmd-10183-2011014697.htm
[19] 沈新坤.医用钛/钛合金表面生物功能化及生物响应[D].重庆: 重庆大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10611-1017801863.htm

SHEN X K. Surface biofunctionalization of biomedical titanium/titanium alloy and biological responses[D]. Chongqing: Chongqing University, 2016.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10611-1017801863.htm
[20] GARCIA A J, REYES C D. Bio-adhesive surfaces to promote osteoblast differentiation and bone formation[J]. Journal of Dental Research, 2005, 84(5):407-413. doi: 10.1177/154405910508400502
[21] SAFRAN S A, BESSER A, NICOLAS A. Self assembly and dynamics of protein adsorption to cell adhesions[C]. Proceedings of the 231st National Meeting of the American-Chemical-Society, MAR, 2006: 26-30.
[22] 杨恬, 易静, 陈誉华, 等.医学细胞生物学:基础、进展和趋势[M].北京:人民卫生出版社, 2011.

YANG T, YI J, CHEN Y H, et al.. Medical Cell Biology:Foundation, Progress and Trend[M]. Beijing:People's Medical Publishing House, 2011.(in Chinese)
[23] EISENBARTH E, LINEZ P, BIEHL V, et al.. Cell orientation and cytoskeleton organisation on ground titanium surfaces[J]. Biomolecular Engineering, 2002, 19:233-237. doi: 10.1016/S1389-0344(02)00028-X
[24] PHILLIPS K C, GANDHI H H, MAZUR E, et al.. Ultrafast laser processing of materials:a review[J]. Advances in Optics and Photonic, 2015, 7(4):684-712. doi: 10.1364/AOP.7.000684
[25] ZUHLKE C A, ANDERSON T P, ALEXANDER D R. Formation of multiscale surface structures on nickel via above surface growth and below surface growth mechanisms using femtosecond laser pulses[J]. Optics Express, 2013, 21(7):8460-8473. doi: 10.1364/OE.21.008460
[26] CZYZ K, MARCZAK J, MAJOR R, et al.. Selected laser methods for surface structuring of biocompatible diamond-like carbon layers[J]. Diamond and Related Materials, 2016, 67:26-40. doi: 10.1016/j.diamond.2016.01.013
[27] VOROBYEV A Y, GUO CH L. Femtosecond laser surface structuring of biocompatible metals[J]. Proceedings of SPIE, 2009, 7203:72030O. doi: 10.1117/12.809593
[28] AHMMED K M T, GRAMBOW C, KIETZIG A M. Fabrication of micro/nano structures on metals by femtosecond laser micromachining[J]. Micromachines, 2014, 5(4):1219-1253. doi: 10.3390/mi5041219
[29] CHILLMAN A, RAMULU M, HASHISH M. Waterjet peening and surface preparation at 600 MPa:a preliminary experimental study[J]. Journal of Fluids Engineering, 2006, 129(4):485-490. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0212679946/
[30] KUMAR A, HIREMATH S S. Improvement of geometrical accuracy of micro holes machined through micro abrasive jet machining[J]. Procedia CIRP, 2016, 46:47-50. doi: 10.1016/j.procir.2016.03.139
[31] KONG M C, AXINTE D, VOICE W. Challenges in using waterjet machining of NiTi shape memory alloys:an analysis of controlled-depth milling[J]. Journal of Materials Processing Technology, 2011, 211(6):959-971. doi: 10.1016/j.jmatprotec.2010.12.015
[32] GRINSPAN A S, GNANAMOORTHY R. A novel surface modification technique for the introduction of compressive residual stress and preliminary studies on Al alloy AA6063[J]. Surface and Coatings Technology, 2006, 201(3-4):1768-1775. doi: 10.1016/j.surfcoat.2006.03.002
[33] SINGH R, KHAMBA J S. Ultrasonic machining of titanium and its alloys:a review[J]. Journal of Materials Processing Technology, 2006, 173(2):125-135. doi: 10.1016/j.jmatprotec.2005.10.027
[34] XIAO X ZH, ZHENG K, LIAO W H. Theoretical model for cutting force in rotary ultrasonic milling of dental zirconia ceramics[J]. The International Journal of Advanced Manufacturing Technology, 2014, 75(9-12):1263-1277. doi: 10.1007/s00170-014-6216-6
[35] RAUTRAY T R, NARAYAN R, KIM K H. Ion implantation of titanium based biomaterials[J]. Progress in Materials Science, 2011, 56(8):1137-1177. doi: 10.1016/j.pmatsci.2011.03.002
[36] KLOCKE F, SCHWADE M, KLINK A, et al.. Influence of electro discharge machining of biodegradable magnesium on the biocompatibility[J]. Procedia CIRP, 2013, 5:88-93. doi: 10.1016/j.procir.2013.01.018
[37] NTASI A, MUELLER W D, ELIADES G, et al.. The effect of Electro Discharge Machining(EDM) on the corrosion resistance of dental alloys[J]. Dental Materials, 2010, 26(12):e237-e245. doi: 10.1016/j.dental.2010.08.001
[38] PARK H W, LEE I. Large pulsed electron beam surface treatment of translucent PMMA[J]. Applied Surface Science, 2014, 308:311-315. doi: 10.1016/j.apsusc.2014.04.163
[39] KIM J, LEE W J, PARK H W. The state of the art in the electron beam manufacturing processes[J]. International Journal of Precision Engineering and Manufacturing, 2016, 17(11):1575-1585. doi: 10.1007/s12541-016-0184-8
[40] BAE H, CHU H H, EDALAT F, et al.. Development of functional biomaterials with micro-and nanoscale technologies for tissue engineering and drug delivery applications[J]. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8(1):1-14.
[41] DUBEY A K, YADAVA V. Laser beam machining-A review[J]. International Journal of Machine Tools and Manufacture, 2008, 48(6):609-628. doi: 10.1016/j.ijmachtools.2007.10.017
[42] MEIJER J. Laser beam machining(LBM), state of the art and new opportunities[J]. Journal of Materials Processing Technology, 2004, 149(1):2-17.
[43] DING K, YE L. Simulation of multiple laser shock peening of a 35CD4 steel alloy[J]. Journal of Materials Processing Technology, 2006, 178(1-3):162-169. doi: 10.1016/j.jmatprotec.2006.03.170
[44] YOU M H, KWAK M K, KIM D H, et al.. Synergistically enhanced osteogenic differentiation of human mesenchymal stem cells by culture on nanostructured surfaces with induction media[J]. Biomacromolecules, 2010, 11(7):1856-1862. doi: 10.1021/bm100374n
[45] HU Y, CAI K Y, LUO ZH, et al.. Surface mediated in situ differentiation of mesenchymal stem cells on gene-functionalized titanium films fabricated by layer-by-layer technique[J]. Biomaterials, 2009, 30(21):3626-3635. doi: 10.1016/j.biomaterials.2009.03.037
[46] MEYER U, BUCHTER A, WIESMANN H P, et al.. Basic reactions of osteoblasts on structured material surfaces[J]. European Cells and Materials, 2005, 9:39-49. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_84298179c92eee7e86d99921d3070b35
[47] HALLGREN C, REIMERS H, CHAKAROV D, et al.. An in vivo study of bone response to implants topographically modified by laser micromachining[J]. Biomaterials, 2003, 24(5):701-710. doi: 10.1016/S0142-9612(02)00266-1
[48] RANELLA A, BARBEROGLOU M, BAKOGIANNI S, et al.. Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures[J]. Acta Biomaterialia, 2010, 6(7):2711-2720. doi: 10.1016/j.actbio.2010.01.016
[49] NUUTINEN T, SILVENNOINEN M, PAIVASAARI K, et al.. Control of cultured human cells with femtosecond laser ablated patterns on steel and plastic surfaces[J]. Biomedical Microdevices, 2013, 15(2):279-288. doi: 10.1007/s10544-012-9726-8
[50] NAKAMURA K, KEATING J H, EDELMAN E R. Pathology of endovascular stents[J]. Interventional Cardiology Clinics, 2016, 5(3):391-403. doi: 10.1016/j.iccl.2016.02.006
[51] MCDANIEL C, GLADKOVSKAYA O, FLANAGAN A, et al.. In vitro study on the response of RAW264.7 and MS-5 fibroblast cells on laser-induced periodic surface structures for stainless steel alloys[J]. RSC Advances, 2015, 5(53):42548-42558. doi: 10.1039/C5RA04342E
[52] WANG X F, OHLIN C A, LU Q H, et al.. Influence of physicochemical properties of laser-modified polystyrene on bovine serum albumin adsorption and rat C6 glioma cell behavior[J]. Journal of Biomedical Materials Research Part A, 2006, 78A(4):746-754. doi: 10.1002/(ISSN)1552-4965
[53] YIANNAKOU C, SIMITZI C, MANOUSAKI A, et al.. Cell patterning via laser micro/nano structured silicon surfaces[J]. Biofabrication, 2017, 9(2):025024. doi: 10.1088/1758-5090/aa71c6
[54] NGUYEN A T, SATHE S R, YIM E K F. From nano to micro:topographical scale and its impact on cell adhesion, morphology and contact guidance[J]. Journal of Physics:Condensed Matter, 2016, 28(18):183001. doi: 10.1088/0953-8984/28/18/183001
[55] WALLAT K, DÖRR D, LE HARZIC R, et al.. Cellular reactions toward nanostructured silicon surfaces created by laser ablation[J]. Journal of Laser Applications, 2012, 24(4):042016. doi: 10.2351/1.4732594
[56] YANG M, LIM C C, LIAO R L, et al.. Oriented and vectorial patterning of cardiac myocytes using a microfluidic dielectrophoresis chip-towards engineered cardiac tissue with controlled macroscopic anisotropy[J]. Journal of Microelectromechanical Systems, 2006, 15(6):1483-1491. doi: 10.1109/JMEMS.2006.883530
[57] STEPAK B D, LECKA K M, PLONEK T, et al.. Laser induced periodic surface structures on pyrolytic carbon prosthetic heart valve[J]. Proceedings of SPIE, 2016, 10159:101590J.
[58] RUSEN L, CAZAN M, MUSTACIOSU C, et al.. Tailored topography control of biopolymer surfaces by ultrafast lasers for cell substrate studies[J]. Applied Surface Science, 2014, 302:256-261. doi: 10.1016/j.apsusc.2013.10.023
[59] 郑庭.钛系材料微纳结构表面成骨细胞及胶原蛋白吸附机理研究[D].哈尔滨: 哈尔滨工业大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10213-1017862359.htm

ZHENG T. Adsrotpion mechanism of osteoblasts and collagen on micro-/nano-structured Ti-material surface[D]. Harbin: Harbin Institute of Technology, 2017.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10213-1017862359.htm
[60] ERDOGAN M, ÖKTEM B, KALAYCIOGLU H, et al.. Texturing of titanium(Ti6Al4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers[J]. Optics Express, 2011, 19(11):10986-10996. doi: 10.1364/OE.19.010986
[61] SCHLIE S, FADEEVA E, KOCH J, et al.. Femtosecond laser fabricated spike structures for selective control of cellular behavior[J]. Journal of Biomaterials Applications, 2010, 25(3):217-233. doi: 10.1177/0885328209345553
[62] WANG Y, JIANG X L, YANG S CH, et al.. MicroRNAs in the regulation of interfacial behaviors of MSCs cultured on microgrooved surface pattern[J]. Biomaterials, 2011, 32(35):9207-9217. doi: 10.1016/j.biomaterials.2011.08.058
[63] WATARI S, HAYASHI K, WOOD J A, et al.. Modulation of osteogenic differentiation in hMSCs cells by submicron topographically-patterned ridges and grooves[J]. Biomaterials, 2012, 33(1):128-136. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3208761
[64] DUMAS V, GUIGNANDON A, VICO L, et al.. Femtosecond laser nano/micro patterning of titanium influences mesenchymal stem cell adhesion and commitment[J]. Biomedical Materials, 2015, 10(5):055002. doi: 10.1088/1748-6041/10/5/055002
[65] SHALABI M M, GORTEMAKER A, HOF M A V, et al.. Implant surface roughness and bone healing:a systematic review[J]. Journal of Dental Research, 2006, 85(6):496-500. doi: 10.1177/154405910608500603
[66] BECKER J, KIRSCH A, SCHWARZ F, et al.. Bone apposition to titanium implants biocoated with recombinant human bone morphogenetic protein-2(rhBMP-2). A pilot study in dogs[J]. Clinical Oral Investigations, 2006, 10(3):217-224. doi: 10.1007/s00784-006-0049-0
[67] 杨菁.纳米控释系统的制备及在血管再狭窄和肿瘤治疗中的应用[D].北京: 北京协和医学院, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10023-1013311834.htm

YANG J. Preparation of nano controlled release system and its application in restenosis and tumor therapy[D]. Beijing: Peking Union Medical College, 2013.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10023-1013311834.htm
[68] OBERRINGER M, AKMAN E, LEE J, et al.. Reduced myofibroblast differentiation on femtosecond laser treated 316LS stainless steel[J]. Materials Science and Engineering:C, 2013, 33(2):901-908. doi: 10.1016/j.msec.2012.11.018
[69] LEE M R, KWON K W, JUNG H, et al.. Direct differentiation of human embryonic stem cells into selective neurons on nanoscale ridge/groove pattern arrays[J]. Biomaterials, 2010, 31(15):4360-4366. doi: 10.1016/j.biomaterials.2010.02.012
[70] YIM E K F, PANG S W, LEONG K W. Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage[J]. Experimental Cell Research, 2007, 313(9):1820-1829. doi: 10.1016/j.yexcr.2007.02.031
[71] VEDULA S R K, RAVASIO A, ANON E, et al.. Microfabricated Environments to Study Collective Cell Behaviors[M]. Micropatterning in Cell Biology Part B. Amsterdam: Academic Press, 2014.