[1] SIEGEL P H. Terahertz technology in biology and medicine[J]. IEEE Transactions on Microwave Theory & Techniques, 2004, 52(10):2438-2447. doi: 10.1109-TMTT.2004.835916/
[2] SIRTORI C. Applied physics: bridge for the terahertz gap[J]. Nature, 2002, 417(6885):132-133. https://www.ncbi.nlm.nih.gov/pubmed/12000945
[3] YANG X, ZHAO X, YANG K, et al.. Biomedical applications of terahertz spectroscopy and imaging[J]. Trends in Biotechnology, 2016, 34(10):810-824. doi: 10.1016/j.tibtech.2016.04.008
[4] TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2):97-105. doi: 10.1038/nphoton.2007.3
[5] 刘宏翔, 姚建铨, 王与烨, 等.太赫兹波近场成像综述[J].红外与毫米波学报, 2016, 35(3):300-309, 376. http://d.old.wanfangdata.com.cn/Periodical/hwyhmb201603009

LIU H X, YAO J Q, WANG Y Y, et al.. Review of THz near-field imaging[J]. Journal of Infrared and Millimeter Waves, 2016, 35(3):300-309, 376.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hwyhmb201603009
[6] KATO M, TRIPATHI S R, MURATE K, et al.. Non-destructive drug inspection in covering materials using a terahertz spectral imaging system with injection-seeded terahertz parametric generation and detection[J]. Optics Express, 2016, 24(6):6425-6432. doi: 10.1364/OE.24.006425
[7] SUIZU K, MIYAMOTO K, YAMASHITA T, et al.. High-power terahertz-wave generation using DAST crystal and detection using mid-infrared powermeter[J]. Optics Letters, 2007, 32(19):2885-2887. doi: 10.1364/OL.32.002885
[8] SCHNEIDER A, NEIS M, STILLHART M, et al.. Generation of terahertz pulses through optical rectification in organic DAST crystals:theory and experiment[J]. Journal of the Optical Society of America B, 2006, 23(9):1822-1835. doi: 10.1364/JOSAB.23.001822
[9] TAKIDA Y, NAWATA K, SUZUKI S, et al.. Nonlinear optical detection of terahertz-wave radiation from resonant tunneling diodes[J]. Optics Express, 2017, 25(5):5389-5396. doi: 10.1364/OE.25.005389
[10] YAMASHITA M, TAKAHASHI H, OUCHI T, et al.. Ultra-broadband terahertz time-domain ellipsometric spectroscopy utilizing GaP and GaSe emitters and an epitaxial layer transferred photoconductive detector[J]. Applied Physics Letters, 2014, 104(5):051103. doi: 10.1063/1.4862974
[11] JOOSHESH A, FESHARAKI F, BAHRAMI-YEKTA V, et al.. Plasmon-enhanced LT-GaAs/AlAs heterostructure photoconductive antennas for sub-bandgap terahertz generation[J]. Optics Express, 2017, 25(18):22140-22148. doi: 10.1364/OE.25.022140
[12] CARNIO B N, GREIG S R, FIRBY C J, et al.. Terahertz electro-optic detection using a <012>-cut chalcopyrite ZnGeP2 crystal[J]. Applied Physics Letters, 2016, 108:261109. doi: 10.1063/1.4955040
[13] SIM K I, JO Y C, HA T, et al.. Terahertz electrodynamics and superconducting energy gap of NbN[J]. Journal of the Korean Physical Society, 2017, 71(9):571-574. doi: 10.3938/jkps.71.571
[14] LIU H, BAI W, FENG J T, et al.. The synthesis of large-diameter ZnTe crystal for THz emitting and detection[J]. Journal of Crystal Growth, 2017, 475:115-120. doi: 10.1016/j.jcrysgro.2017.06.009
[15] MEIER U, BÖSCH M, BOSSHARD C, et al.. Parametric interactions in the organic salt 4-N, N-dimethylamino-4-N-methyl-stilbazolium to sylate at telecommunication wavelengths[J]. Journal of Applied Physics, 1998, 83(7):3486-3489. doi: 10.1063/1.366560
[16] MORI Y, TAKAHASHI Y, IWAI T, et al.. Slope nucleation method for the growth of high-quality 4-dimethylamino-methyl-4-stilbazolium-tosylate(DAST) Crystals[J]. Japanese Journal of Applied Physics, 2000, 39(10A):L1006-L1008. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4be9a97409d57eb46b602cec55665a80
[17] JAGANNATHAN K, KALAINATHAN S, GNANASEKARAN T, et al.. Growth and characterization of the NLO crystal 4-dimethylamino-N-methyl-4-stilbazolium tosylate(DAST)[J]. Crystal Growth & Design, 2007, 7(5):859-863. http://pubs.acs.org/cgi-bin/abstract.cgi/cgdefu/2007/7/i05/abs/cg0602414.html
[18] LI Y, WU ZH Y, ZHANG X Y, et al.. Crystal growth and terahertz wave generation of organic NLO crystals:OH1[J]. Journal of Crystal Growth, 2014, 402:53-59. doi: 10.1016/j.jcrysgro.2014.04.033
[19] ZHONG K, MEI J L, WANG M R, et al.. Compact high-repetition-rate monochromatic terahertz source based on difference frequency generation from a dual-wavelength Nd:YAG laser and DAST crystal[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38(1):87-95. doi: 10.1007/s10762-016-0316-3
[20] LEE S H, JAZBINSEK M, HAURI C P, et al.. Recent progress in acentric core structures for highly efficient nonlinear optical crystals and their supramolecular interactions and terahertz applications[J]. Cryst. Eng. Comm., 2016, 18(38):7180-7203. doi: 10.1039/C6CE00707D
[21] PAN F, KNÖPFLE G, BOSSHARD C, et al.. Electro-optic properties of the organic salt 4-N, N-dimethylamino-4'-N'-methyl-stilbazolium tosylate[J]. Applied Physics Letters, 1996, 69(1):13-15. doi: 10.1063/1.118101
[22] HUNZIKER C, KWON S J, FIGI H, et al.. Configurationally locked, phenolic polyene organic crystal 2-{3-(4-hydroxystyryl)-5, 5-dimethylcyclohex-2-enylidene}malononitrile:linear and nonlinear optical properties[J]. Journal of the Optical Society of America B, 2008, 25(10):1678-1683. doi: 10.1364/JOSAB.25.001678
[23] MARDER S R, PERRY J W, SCHAEFER W P. Synthesis of organic salts with large second-order optical nonlinearities[J]. Science, 1989, 245(4918):626-628. doi: 10.1126/science.245.4918.626
[24] RUIZ B, JAZBINSEK M, GVNTER P. Crystal growth of DAST[J]. Crystal Growth & Design, 2008, 8(11):4173-4184. http://d.old.wanfangdata.com.cn/Periodical/shlgdxxb201805006
[25] PAN F, WONG M S, BOSSHARD C, et al.. Crystal growth and characterization of the organic salt 4-N, N-dimethylamino-4'-N'-methyl-stilbazolium tosylate(DAST)[J]. Advanced Materials, 1996, 8(7):592-595. doi: 10.1002/(ISSN)1521-4095
[26] JAZBINSEK M, MUTTER L, GVNTER P. Photonic applications with the organic nonlinear optical crystal DAST[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(5):1298-1311. doi: 10.1109/JSTQE.2008.921407
[27] YANG Z, MUTTER L, STILLHART M, et al.. Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation[J]. Advanced Functional Materials, 2007, 17(13):2018-2023. doi: 10.1002/adfm.v17:13
[28] TANIUCHI T, IKEDA S, MINENO Y, et al.. Terahertz properties of a new organic crystal 4'-dimethylamino-N-methyl-4-stilbazolium p-chlorobenzenesulfonate[J]. Japanese Journal of Applied Physics, 2005, 44(28-32):L932-L934. https://www.researchgate.net/publication/243743789_Terahertz_Properties_of_a_New_Organic_Crystal_4'-Dimethylamino-N-methyl-4-stilbazolium_p-Chlorobenzenesulfonate
[29] MATSUKAWA T, NOTAKE T, NAWATA K, et al.. Terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium p-bromobenzenesulfonate crystal:effect of halogen substitution in a counter benzenesulfonate of stilbazolium derivatives[J]. Optical Materials, 2014, 36(12):1995-1999. doi: 10.1016/j.optmat.2014.01.012
[30] BRUNNER F, SCHNEIDER A, GVN TER P. Velocity-matched terahertz generation by optical rectification in an organic nonlinear optical crystal using a Ti:sapphire laser[J]. Applied Physics Letters, 2009, 94(6):061119. doi: 10.1063/1.3080214
[31] MATSUKAWA T, TAKAHASHI Y, MIYABARA R, et al.. Development of DAST-derivative crystals for terahertz waves generation[J]. Journal of Crystal Growth, 2009, 311(3):568-571. doi: 10.1016/j.jcrysgro.2008.09.080
[32] VIJAY R J, MELIKECHI N, THOMAS T, et al.. Growth, structural, optical and thermal properties of potential THz material:N, N-dimethylamino-N'-methylstilbazolium 4-styrenesulphonate[J]. Journal of Crystal Growth, 2012, 338(1):170-176. doi: 10.1016/j.jcrysgro.2011.10.045
[33] RUIZ B, YANG ZH, GRAMLICH V, et al.. Synthesis and crystal structure of a new stilbazolium salt with large second-order optical nonlinearity[J]. Journal of Materials Chemistry, 2006, 16(27):2839-2842. doi: 10.1039/B603049A
[34] LEE S H, KOO M J, LEE K H, et al.. Quinolinium-based organic electro-optic crystals:crystal characteristics in solvent mixtures and optical properties in the terahertz range[J]. Materials Chemistry and Physics, 2016, 169:62-70. doi: 10.1016/j.matchemphys.2015.11.028
[35] JEONG J H, KANG B J, KIM J S, et al.. High-power broadband organic THz generator[J]. Scientific Report, 2013, 3:3200. doi: 10.1038/srep03200
[36] LEE S H, LU J, LEE S J, et al.. Benzothiazolium single crystals:a new class of nonlinear optical crystals with efficient THz wave generation[J]. Advanced Materials, 2017, 29(30):1701748. doi: 10.1002/adma.201701748
[37] KANG B J, BAEK I H, JEONG J H, et al.. Characteristics of efficient few-cycle terahertz radiation generated in as-grown nonlinear organic single crystals[J]. Current Applied Physics, 2014, 14(3):403-406. doi: 10.1016/j.cap.2013.12.023
[38] KANG B J, BAEK I H, LEE S H, et al.. Highly nonlinear organic crystal OHQ-T for efficient ultra-broadband terahertz wave generation beyond 10 THz[J]. Optics Express, 2016, 24(10):11054-11061. doi: 10.1364/OE.24.011054
[39] BHARATH D, KALAINATHAN S. Dielectric, optical and mechanical studies of phenolic polyene OH1 organic electrooptic crystal[J]. Optics & Laser Technology, 2014, 63:90-97. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=096e23bce23be3e8a6920ea35e881345
[40] LEMKE R. Solvatochromie von 80 mμ in verschiedenen Alkoholen bei Arylidenisophoron-Abkömmlingen[J]. Chemische Berichte, 1970, 103(6):1894-1899. doi: 10.1002/(ISSN)1099-0682
[41] KOLEV T, GLAVCHEVA Z, YANCHEVA D, et al.. 2-{3-[2-(4-hydroxyphenyl)vinyl]-5, 5-dimethylcyclohex-2-en-1-ylidene}malononitrile[J]. Acta Crystallographica, 2001, E57(6):o561-o562..
[42] BRUNNER F D J, KWON O P, KWON S J, et al.. Hydrogen-bonded organic nonlinear optical crystal for high-efficiency terahertz generation and detection[J]. Optics Express, 2008, 16(21):16496-16508. doi: 10.1364/OE.16.016496
[43] HASHIMOTO H, OKADA Y, FUJIMURA H, et al.. Second-harmonic generation from single crystals of N-substituted 4-Nitroanilines[J]. Japanese Journal of Applied Physics, 1997, 36(11):6754-6760. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=IOP_9077354
[44] PIELA K, TUROWSKA-TYRK I, DROZD M, et al.. Polymorphism and cold crystallization in optically nonlinear N-benzyl-2-methyl-4-nitroaniline crystal studied by X-ray diffraction, calorimetry and raman spectroscopy[J]. Journal of Molecular Structure, 2011, 991(1-3):42-49. doi: 10.1016/j.molstruc.2011.01.066
[45] MIYAMOTO K, MINAMIDE H, FUJIWARA M, et al.. Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal[J]. Optics Letters, 2008, 33(3):252-254. doi: 10.1364/OL.33.000252
[46] ZHANG X C, MA X F, JIN Y, et al.. Terahertz optical rectification from a nonlinear organic crystal[J]. Applied Physics Letters, 1992, 61(26):3080-3082. doi: 10.1063/1.107968
[47] KAWASE K, MIZUNO M, SOHMA S, et al.. Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser[J]. Optics Letters, 1999, 24(15):1065-1067. doi: 10.1364/OL.24.001065
[48] WALTHER M, JENSBY K, KEIDING S R, et al.. Far-infrared properties of DAST[J]. Optics Letters, 2000, 25(12):911-913. doi: 10.1364/OL.25.000911
[49] KAWASE K, HATANAKA T, TAKAHASHI H, et al.. Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate[J]. Optics Letters, 2000, 25(23):1714-1716. doi: 10.1364/OL.25.001714
[50] SCHNEIDER A, BIAGGIOB I, GVNTER P. Optimized generation of THz pulses via optical rectification in the organic salt DAST[J]. Optics Communications, 2003, 224(4-6):337 341. doi: 10.1016/j.optcom.2003.07.013
[51] TANIUCHI T, OKADA S, NAKANISHI H. Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application[J]. Journal of Applied Physics, 2004, 95(11):5984-5988. doi: 10.1063/1.1713045
[52] ITO H, SUIZU K, YAMASHITA T, et al.. Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal[J]. Japanese Journal of Applied Physics, 2007, 46(11):7321-7324. doi: 10.1143/JJAP.46.7321
[53] SHIBUYA T, AKIBA T, SUIZU K, et al.. Terahertz-wave generation using a 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal under intra-cavity conditions[J]. Applied Physics Express, 2008, 1(4):042002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=72afc8869ba914f312a28033328049ad
[54] SCHNEIDER A, STILLHART M, GVNTER P. High efficiency generation and detection of terahertz pulses using laser pulses at telecommunication wavelengths[J]. Optics Express, 2006, 14(12):5376-5384. doi: 10.1364/OE.14.005376
[55] LIU J J, MERKTA F. Generation of tunable Fourier-transform-limited terahertz pulses in 4-N, N-dimethylamino-4'-N'-methyl stilbazolium tosylate crystals[J]. Applied Physics Letters, 2008, 93(13):131105. doi: 10.1063/1.2977490
[56] CUNNINGHAM P D, HAYDEN L M. Optical properties of DAST in the THz range[J]. Optics Express, 2010, 18(23):23620-23625. doi: 10.1364/OE.18.023620
[57] SUIZU K, SHIBUYA T, UCHIDA H, et al.. Prism-coupled Cherenkov phase-matched terahertz wave generation using a DAST crystal[J]. Optics Express, 2010, 18(4):3338-3344. doi: 10.1364/OE.18.003338
[58] UCHIDA H, OOTA K, MINAMI T, et al.. Generation of single-cycle terahertz pulse using Cherenkov phase matching with 4-dimethylamino-N'-methyl-4'-stilbazolium tosylate crystal[J]. Applied Physics Express, 2017, 10(6):062601. doi: 10.7567/APEX.10.062601
[59] KATAYAMA I, AKAI R, BITO M, et al.. Ultrabroad band terahertz generation using 4-N, N-dimethylamino-4'-N'-methyl-stilbazolium tosylate single crystals[J]. Applied Physics Letters, 2010, 97(2):021105. doi: 10.1063/1.3463452
[60] HAURI C P, RUCHERT C, VICARIO C, et al.. Strong-field single-cycle THz pulses generated in an organic crysta[J]. Applied Physics Letters, 2011, 99(16):161116. doi: 10.1063/1.3655331
[61] TANG M, MINAMIDE H, WANG Y Y, et al.. Tunable terahertz-wave generation from DAST crystal pumped by a monolithic dual-wavelength fiber laser[J]. Optics Express, 2011, 19(2):779-786. doi: 10.1364/OE.19.000779
[62] NAWATA K, ABE T, MIYAKE Y, et al.. Efficient terahertz-wave generation using a 4-dimethylamino-N-methyl-4-stilbazolium tosylate pumped by a dual-wavelength neodymium-doped yttrium aluminum garnet laser[J]. Applied Physics Express, 2012, 5(11):112401. doi: 10.1143/APEX.5.112401
[63] DOLASINSKI B, POWERS P E, HAUS J W, et al.. Tunable narrow band difference frequency THz wave generation in DAST via dual seed PPLN OPG[J]. Optics Express, 2015, 23(3):3669-3680. doi: 10.1364/OE.23.003669
[64] TOKIZANE Y, NAWATA K, HAN ZH L, et al.. Tunable terahertz waves from 4-dimethylamino-N'-methyl-4'-stibazolium tosylate pumped with dual-wavelength injection-seeded optical parametric generation[J]. Applied Physics Express, 2017, 10(2):022101. doi: 10.7567/APEX.10.022101
[65] MONOSZLAI B, VICARIO C, JAZBINSEK M, et al.. High-energy terahertz pulses from organic crystals:DAST and DSTMS pumped at Ti:sapphire wavelength[J]. Optics Letters, 2013, 38(23):5106-5109. doi: 10.1364/OL.38.005106
[66] TENG B, WANG SH H, FENG K, et al.. Crystal growth, quality characterization and THz properties of DAST crystals[J]. Crystal Research & Technology, 2014, 49(12):943-947. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ce96fa341af6417043a0c69cd023a8a9
[67] MATSUKAWA T, MINENO Y, ODANI T, et al.. Synthesis and terahertz-wave generation of mixed crystals composed of 1-methyl-4 -{2-[4-(dimethylamino)- phenyl]ethenyl} pyridinium p-toluenesulfonate and p-chlorobenzenes-Ulfonate[J]. Journal of Crystal Growth, 2007, 299(2):344-348. doi: 10.1016/j.jcrysgro.2006.11.303
[68] MATSUKAWA T, YOSHIMURA M, TAKAHASHI Y, et al.. Bulk crystal growth of stilbazolium derivatives for terahertz waves generation[J]. Japanese Journal of Applied Physics, 2010, 49(7R):075502. https://www.researchgate.net/publication/243749745_Bulk_Crystal_Growth_of_Stilbazolium_Derivatives_for_Terahertz_Waves_Generation?ev=auth_pub
[69] BRAHADEESWARAN S, TAKAHASHI Y, YOSHIMURA M, et al.. Growth of ultrathin and highly efficient organic nonlinear optical crystal 4'-dimethylamino-N-methyl-4-stilbazolium p-chlorobenzenesulfonate for enhanced terahertz efficiency at higher frequencies[J]. Crystal Growth & Design, 2013, 13(2):415-421. https://www.researchgate.net/publication/263960327_Growth_of_Ultrathin_and_Highly_Efficient_Organic_Nonlinear_Optical_Crystal_4'-Dimethylamino-N-methyl-4-Stilbazolium_p-Chlorobenzenesulfonate_for_Enhanced_Terahertz_Efficiency_at_Higher_Frequencies
[70] MUTTER L, BRUNNER F D J, YANG Z, et al.. Linear and nonlinear optical properties of the organic crystal DSTMS[J]. Journal of the Optical Society of America B, 2007, 24(9):2556-2561. doi: 10.1364/JOSAB.24.002556
[71] STILLHART M, SCHNEIDER A, GVNTER P. Optical properties of 4-N, N-dimethylamino-4-N-methyl-stilbazolium 2, 4, 6-trimethylbenzenesulfonate crystals at terahertz frequencies[J]. Journal of the Optical Society of America B, 2008, 25(11):1914-1919. doi: 10.1364/JOSAB.25.001914
[72] RUCHERT C, VICARIO C, HAURI C P. Spatiotemporal focusing dynamics of intense supercontinuum THz pulses[J]. Physical Review Letters, 2013, 110(12):123902. doi: 10.1103/PhysRevLett.110.123902
[73] VICARIO C, MONOSZLAI B, HAURI C P. GV/m single-cycle terahertz fields from a laser-driven large-size partitioned organic crystal[J]. Physical Review Letters, 2014, 112(21):213901. doi: 10.1103/PhysRevLett.112.213901
[74] LIU P X, XU D G, LI Y, et al.. Widely tunable and monochromatic terahertz difference frequency generation with organic crystal DSTMS[J]. Europhysics Letters, 2014, 106(6):60001. doi: 10.1209/0295-5075/106/60001
[75] SHALABY M, HAURI C P. Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness[J]. Nature Communications, 2015, 6:5976. doi: 10.1038/ncomms6976
[76] YANG S G, WANG X J, WU ZH H, et al.. Narrow linewidth terahertz generation engined by all-fiber parametric optical source[J]. IEEE Photonics Journal, 2015, 7(6):1300407. https://www.researchgate.net/publication/283244897_Narrow_Linewidth_Terahertz_Generation_Engined_by_All-Fiber_Parametric_Optical_Source?ev=auth_pub
[77] SOMMA C, FOLPINI G, GUPTA J, et al.. Ultra-broadband terahertz pulses generated in the organic crystal DSTMS[J]. Optics Letters, 2015, 40(14):3404-3407. doi: 10.1364/OL.40.003404
[78] ZHANG Y, ZHANG X L, LI SH X, et al.. Broadband THz-TDS system based on DSTMS emitter and LTG InGaAs/InAlAs photoconductive antenna detector[J]. Scientific Reports, 2016, 6:26949. doi: 10.1038/srep26949
[79] LIU B, BROMBERGER H, CARTELLA A, et al.. Generation of narrowband, high-intensity, carrier-envelope phase-stable pulses tunable between 4 and 18 THz[J]. Optics Letters, 2017, 42(1):129-131. doi: 10.1364/OL.42.000129
[80] KUROYANAHGI K, FUJIWARA M, HASHIMOTO H, et al.. All organic terahertz electromagnetic wave emission and detection using highly purified N-benzyl-2-methyl-4-nitroaniline crystals[J]. Japanese Journal of Applied Physics, 2006, 45(5A):4068-4073. doi: 10.1143/JJAP.45.4068
[81] KUROYANAHGI K, FUJIWARA M, HASHIMOTO H, et al.. Determination of refractive indices and absorption coefficients of highly purified N-benzyl-2-methyl-4-nitroaniline crystal in terahertz frequency regime[J]. Japanese Journal of Applied Physics, 2006, 45(29):L761-L764. doi: 10.1143/JJAP.45.L761
[82] MIYAMOTO K, OHNO S, FUJIWARA M, et al.. Optimized terahertz-wave generation using BNA-DFG[J]. Optics Express, 2009, 17(17):14832-14838. doi: 10.1364/OE.17.014832
[83] NOTAKE T, NAWATA K, KAWAMATA H, et al.. Development of an ultra-widely tunable DFG-THz source with switching between organic nonlinear crystals pumped with a dualwavelength BBO optical parametric oscillator[J]. Optics Express, 2012, 20(23):25850-25857. doi: 10.1364/OE.20.025850
[84] NOTAKE T, NAWATA K, KAWAMATA H, et al.. Solution growth of high-quality organic N-benzyl-2-methyl-4-nitroaniline crystal for ultra-wideband tunable DFG-THz source[J]. Optical Materials Express, 2012, 2(2):119-125. doi: 10.1364/OME.2.000119
[85] KAMADA K, TAKIDA Y, MINAMIDE H, et al.. Growth of N-benzyl-2-methyl-4-nitroaniline(BNA) single crystal fibers by micro-pulling down method[J]. Journal of Crystal Growth, 2016, 452:162-165. doi: 10.1016/j.jcrysgro.2016.04.041
[86] SHALABY M, VICARIO C, THIRUPUGALMANI K, et al.. Intense THz source based on BNA organic crystal pumped at TI:sapphire wavelength[J]. Optics Letters, 2016, 41(8):1777-1780. doi: 10.1364/OL.41.001777
[87] KWON O P, KWON S J, JAZBINSEK M, et al.. Organic phenolic configurationally locked polyene single crystals for electro-optic and terahertz wave applications[J]. Advanced Functional Materials, 2008, 18(20):3242-3250. doi: 10.1002/adfm.v18:20
[88] RUCHERT C, VICARIO C, HAURI C P. Scaling submillimeter single-cycle transients toward megavolts per centimeter field strength via optical rectification in the organic crystal OH1[J]. Optics Letters, 2012, 37(5):899-901. doi: 10.1364/OL.37.000899
[89] UCHIDA H, TRIPATHI S R, SUIZU K, et al.. Widely tunable broadband terahertz radiation generation using a configurationally locked polyene 2-[3-(4-hydroxystyryl)-5, 5-dimethylcyclohex-2-enylidene] malononitrile crystal via difference frequency generation[J]. Applied Physics B, 2013, 111(3):489-493. doi: 10.1007/s00340-013-5362-0
[90] STEPANOV A G, RUCHERT C, LEVALLOIS J, et al.. Generation of broadband THz pulses in organic crystal OH1 at room temperature and 10 K[J]. Optical Materials Express, 2014, 4(4):870-875. doi: 10.1364/OME.4.000870
[91] MAJKIC' A, ZGONIK M, PETELIN A, et al.. Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1[J]. Applied Physics Letters, 2014, 105(14):141115. doi: 10.1063/1.4897639
[92] VICARIO C, JAZBINSEK M, OVCHINNIKOV A V, et al.. High efficiency THz generation in DSTMS, DAST and OH1 pumped by Cr:forsterite laser[J]. Optics Express, 2015, 23(4):4573-4580. doi: 10.1364/OE.23.004573
[93] KIM J, LEE S H, LEE S C, et al.. Terahertz phonon modes of highly efficient electro-optic phenyltriene OH1 crystals[J]. Journal of Physical Chemistry C, 2016, 120(42):24360-24369. doi: 10.1021/acs.jpcc.6b07979
[94] LIU P X, ZHANG X Y, YAN CH, et al.. Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5, 5-dime-thylcyclohex-2-enylidene) malononitrile[J]. Applied Physics Letters, 2016, 108(1):011104. doi: 10.1063/1.4939456
[95] ZHANG X Y, JIANG X X, LIU P X, et al.. Molecular design on isoxazolone-based derivatives with large second-order harmonic generation effect and terahertz wave generation[J]. Cryst.Eng.Comm., 2016, 18(20):3667-3673. doi: 10.1039/C6CE00398B
[96] KIM P J, JEONG J H, JAZBINSEK M, et al.. Highly efficient organic THz generator pumped at near-infrared:quinolinium single crystals[J]. Advanced Functional Materials, 2012, 22(1):200-209. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0225693569/
[97] BRUNNER F D J, LEE S H, KWON O P, et al.. THz generation by optical rectification of near-infrared laser pulses in the organic nonlinear optical crystal HMQ-TMS[J]. Optical Materials Express, 2014, 4(8):1586-1592. doi: 10.1364/OME.4.001586
[98] VICARIO C, MONOSZLAI B, JAZBINSEK M, et al.. Intense, carrier frequency and bandwidth tunable quasi single-cycle pulses from an organic emitter covering the Terahertz frequency gap[J]. Scientific Reports, 2015, 5:14394. doi: 10.1038/srep14394
[99] LU J, HWANG H Y, LI X, et al.. Tunable multi-cycle THz generation in organic crystal HMQ-TMS[J]. Optics Express, 2015, 23(17):22723-22729. doi: 10.1364/OE.23.022723
[100] LEE S H, LEE S J, JAZBINSEK M, et al.. Electro-optic crystals grown in confined geometry with optimal crystal characteristics for THz photonic applications[J]. Cryst.Eng.Comm., 2016, 18(38):7311-7318. doi: 10.1039/C6CE00958A
[101] HE Y X, WANG Y Y, XU D G, et al.. High-energy and ultra-wideband tunable terahertz source with DAST crystal via diflerence frequency generation[J]. Applied Physics B, 2018, 124(1):16. doi: 10.1007/s00340-017-6887-4