[1] GALLAGHER T F. Rydberg Atoms[M]. Cambridge:Cambridge University Press, 1994.
[2] PONOMARENKO D V, SHESTAKOV A F. Polarizabilities of ns and np Rydberg states of the Li atom[J]. Chemical Physics Letters, 1993, 210(1-3):269-273. doi: 10.1016/0009-2614(93)89132-2
[3] BALUKTSIAN T, HUBER B, LÖW R, et al.. Evidence for strong van der Waals type Rydberg-Rydberg interaction in a thermal vapor[J]. Physical Review Letters, 2013, 110(12):123001. doi: 10.1103/PhysRevLett.110.123001
[4] SAFFMAN M, WALKER T G, MØLMER K. Quantum information with Rydberg atoms[J]. Reviews of Modern Physics, 2010, 82(3):2313-2363. doi: 10.1103/RevModPhys.82.2313
[5] MÜLLER M, LESANOVSKY I, WEIMER H, et al.. Mesoscopic Rydberg gate based on electromagnetically induced transparency[J]. Physical Review Letters, 2009, 102(17):170502. doi: 10.1103/PhysRevLett.102.170502
[6] SEDLACEK J A, SCHWETTMANN A, KVBLER H, et al.. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature Physics, 2012, 8(11):819-824. doi: 10.1038/nphys2423
[7] HANKIN A M, JAU Y Y, PARAZZOLI L P, et al.. Two-atom Rydberg blockade using direct 6S to nP excitation[J]. Physical Review A, 2014, 89(3):033416. doi: 10.1103/PhysRevA.89.033416
[8] TONG D, FAROOQI S M, STANOJEVIC J, et al.. Local blockade of Rydberg excitation in an ultracold gas[J]. Physical Review Letters, 2004, 93(6):063001. doi: 10.1103/PhysRevLett.93.063001
[9] ZHANG H, WANG L M, ZHANG L J, et al.. Stark-induced L-mixing interferences in ultracold cesium Rydberg atoms[J]. Physical Review A, 2013, 87(3):033405. doi: 10.1103/PhysRevA.87.033405
[10] 王丽, 张好, 张临杰.超冷里德堡原子的俘获损耗光谱[J].量子光学学报, 2018, 24(2):178-183. http://d.old.wanfangdata.com.cn/Periodical/lzgxxb201802009

WANG L, ZHANG H, ZHANG L J. Trap loss spectroscopy of ultracold cesium Rydberg atoms[J]. Journal of Quantum Optics, 2018, 24(2):178-183.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/lzgxxb201802009
[11] 韩小萱, 焦月春, 赵建明.ns6s里德堡分子的势能曲线[J].量子光学学报, 2017, 23(1):46-51. http://d.old.wanfangdata.com.cn/Periodical/lzgxxb201701006

HAN X X, JIAO Y CH, ZHAO J M. Potential of long-range ns6s Rydberg molecule[J]. Journal of Quantum Optics, 2017, 23(1):46-51.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/lzgxxb201701006
[12] BARREDO D, RAVETS S, LABUHN H, et al.. Demonstration of a strong Rydberg blockade in three-atom systems with anisotropic interactions[J]. Physical Review Letters, 2014, 112(18):183002. doi: 10.1103/PhysRevLett.112.183002
[13] JOHNSON J E, ROLSTON S L. Interactions between Rydberg-dressed atoms[J]. Physical Review A, 2010, 82(3):033412. doi: 10.1103/PhysRevA.82.033412
[14] WILSON A C, OSPELKAUS C, VANDEVENDER A P, et al.. A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions[J]. Applied Physics B, 2011, 105(4):741-748. doi: 10.1007/s00340-011-4771-1
[15] LO H Y, ALONSO J, KIENZLER D, et al.. All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions[J]. Applied Physics B, 2014, 114(1-2):17-25. doi: 10.1007/s00340-013-5605-0
[16] BRIDGE E M, KEEGAN N C, BOUNDS A D, et al.. Tunable cw UV laser with < 35 kHz absolute frequency instability for precision spectroscopy of Sr Rydberg states[J]. Optics Express, 2016, 24(3):2281-2292. doi: 10.1364/OE.24.002281
[17] RENGELINK R J, NOTERMANS R P M J W, VASSEN W. A simple 2 W continuous-wave laser system for trapping ultracold metastable helium atoms at the 319.8 nm magic wavelength[J]. Applied Physics B, 2016, 122(5):122. doi: 10.1007/s00340-016-6395-y
[18] WANG J Y, BAI J D, HE J, et al.. Realization and characterization of single-frequency tunable 637.2 nm high-power laser[J]. Optics Communications, 2016, 370:150-155. doi: 10.1016/j.optcom.2016.02.067
[19] WANG J Y, BAI J D, HE J, et al.. Development and characterization of a 2.2 W narrow-linewidth 318.6 nm ultraviolet laser[J]. Journal of the Optical Society of America B, 2016, 33(10):2020-2025. doi: 10.1364/JOSAB.33.002020
[20] BAI J D, WANG J Y, HE J, et al.. Electronic sideband locking of a broadly tunable 318.6 nm ultraviolet laser to an ultra-stable optical cavity[J]. Journal of Optics, 2017, 19(4):045501. doi: 10.1088/2040-8986/aa5a8c
[21] WANG J Y, BAI J D, HE J, et al.. Single-photon cesium Rydberg excitation spectroscopy using 318.6-nm UV laser and room-temperature vapor cell[J]. Optics Express, 2017, 25(19):22510-22518. doi: 10.1364/OE.25.022510
[22] BAI J D, WANG J Y, LIU S, et al.. Autler-Townes doublet in single-photon Rydberg spectra of cesium atomic vapor with a 319 nm UV laser[J]. Applied Physics B, 2019, 125(3):33. doi: 10.1007/s00340-019-7151-x
[23] BAI J D, LIU S, WANG J Y, et al.. Single-photon Rydberg excitation and trap-loss spectroscopy of cold cesium atoms in a magneto-optical trap by using of a 319-nm ultra-violet laser system[J]. arXiv: 1811.05092v2, 2018.
[24] 白建东, 王杰英, 王军民.基于光纤延时声光频移自差拍法快速测量激光线宽[J].激光与光电子学进展, 2016, 53(6):061407. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201606027

BAI J D, WANG J Y, WANG J M. Rapid measurement of laser linewidth based on fiber-delayed AOM-shifted self-heterodyne scheme[J]. Laser & Optoelectronics Progress, 2016, 53(6):061407.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201606027
[25] THOUMANY P, HÄNSCH T, STANIA G, et al.. Optical spectroscopy of rubidium Rydberg atoms with a 297 nm frequency-doubled dye laser[J]. Optics Letters, 2009, 34(11):1621-1623. doi: 10.1364/OL.34.001621
[26] AUTLER S H, TOWNES C H. Stark effect in rapidly varying fields[J]. Physical Review, 1955, 100(2):703-722. doi: 10.1103/PhysRev.100.703
[27] SCULLY M O, ZUBAIRY M S. Quantum Optics[M] Cambridge:Cambridge University Press, 1997.
[28] FLEISCHHAUER M, IMAMOGLU A, MARANGOS J P. Electromagnetically induced transparency:Optics in coherent media[J]. Reviews of Modern Physics, 2005, 77(2):633-673. doi: 10.1103/RevModPhys.77.633
[29] HAU L V, HARRIS S E, DUTTON Z, et al.. Light speed reduction to 17 meters per second in an ultracold atomic gas[J]. Nature, 1999, 397(6720):594-598. doi: 10.1038/17561
[30] BRAJE D A, BALIĆ V, GODA S, et al.. Frequency mixing using electromagnetically induced transparency in cold atoms[J]. Physical Review Letters, 2004, 93(18):183601. doi: 10.1103/PhysRevLett.93.183601
[31] AHMED E H, INGRAM S, KIROVA T, et al.. Quantum control of the spin-orbit interaction using the Autler-Townes effect[J]. Physical Review Letters, 2011, 107(16):163601. doi: 10.1103/PhysRevLett.107.163601
[32] RAITZSCH U, HEIDEMANN R, WEIMER H, et al.. Investigation of dephasing rates in an interacting Rydberg gas[J]. New Journal of Physics, 2009, 11(5):055014. doi: 10.1088/1367-2630/11/5/055014
[33] MITSUNAGA M, IMOTO N. Observation of an electromagnetically induced grating in cold sodium atoms[J]. Physical Review A, 1999, 59(6):4773-4776. doi: 10.1103/PhysRevA.59.4773
[34] LIANG Q B, YANG B D, YANG J F, et al.. Autler-Townes doublet in the absorption spectra for the transition between excited states of cold cesium atoms[J]. Chinese Physics B, 2010, 19(11):113207. doi: 10.1088/1674-1056/19/11/113207
[35] MENON S, AGARWAL G S. Gain components in the Autler-Townes doublet from quantum interferences in decay channels[J]. Physical Review A, 1999, 61(1):013807. doi: 10.1103/PhysRevA.61.013807
[36] SINGER K, REETZ-LAMOUR M, AMTHOR T, et al.. Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms[J]. Physical Review Letters, 2004, 93(16):163001. doi: 10.1103/PhysRevLett.93.163001
[37] BOISSEAU C, SIMBOTIN I, CÔTÉ R. Macrodimers:ultralong range Rydberg molecules[J]. Physical Review Letters, 2002, 88(13):133004. doi: 10.1103/PhysRevLett.88.133004
[38] MARINESCU M. Dispersion coefficients for the nP-nP asymptote of homonuclear alkali-metal dimers[J]. Physical Review A, 1997, 56(6):4764-4773. doi: 10.1103/PhysRevA.56.4764