[1] MATSON L E, CHEN M Y, ATAD-ETTEDGUI E, et al.Enabling materials and processes for large aerospace mirrors[J]. Proceedings of SPIE, 2008, 7018: 70180L. doi: 10.1117/12.790525
[2] 康健, 宣斌, 谢京江.表面改性碳化硅基底反射镜加工技术现状[J].中国光学, 2013, 6(6): 824-833. http://www.chineseoptics.net.cn/CN/abstract/abstract9042.shtml

KANG J, XUAN F, XIE J J. Manufacture technology status of surface modified silicon carbide mirrors[J]. Chinese Optics, 2013, 6(6): 824-833. (in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9042.shtml
[3] 王富国, 乔兵, 张景旭. 2m SiC反射镜柔性被动支撑系统[J].光学  精密工程, 2017, 25(10): 2591-2598. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201710008

WANG F G, QIAO B, ZHANG J X. Flexible passive support system for 2m SiC reflective mirror[J]. Opt. Precision Eng., 2017, 25(10): 2591-2598. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201710008
[4] MILLER J L, FRIEDMAN E. Photonics Rules of Thumb[M]. New York: McGraw Hill, 2003.
[5] 严丛林.反射镜支撑结构设计与分析[D].成都: 中国科学院研究生院(光电技术研究所), 2013.

YAN C L. Design and analysis for the support structure of large aperture rectangular mirror[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2013. (in Chinese)
[6] HUANG Y T, FAN B, WAN Y J, et al.Improving the performance of single point diamond turning surface with ion beam figuring[J]. Optik, 2018, 172: 540-544. doi: 10.1016/j.ijleo.2018.07.039
[7] AIKENS D M, WOLFE C R, LAWSON J K. Use of power spectral density (PSD) functions in specifying optics for the National Ignition Facility[J]. Proceedings of SPIE, 1995, 2576: 281-292. doi: 10.1117/12.215604
[8] 谷抇昕.美媒展望塑造未来的18项航空航天技术[J].现代军事, 2016(12): 80-87. http://www.cnki.com.cn/Article/CJFDTotal-XDJI201612034.htm

GU H X. The 18 media aerospace technologies that the US media look forward to shape the future[J]. Arms & Technology, 2016(12): 80-87. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-XDJI201612034.htm
[9] WOODARD K S, MYRICK B H. Progress on high-performance rapid prototype aluminum mirrors[J]. Proceedings of SPIE, 2017, 10181: 101810T. http://cn.bing.com/academic/profile?id=e39bdec9f73668c3bafeb76f92f38ed7&encoded=0&v=paper_preview&mkt=zh-cn
[10] WOODARD K S, COMSTOCK L E, WAMBOLDT L, et al.Optimum selection of high performance mirror substrates for diamond finishing[J]. Proceedings of SPIE, 2016, 9822: 98220C. http://cn.bing.com/academic/profile?id=10421dc55fcff27bb164b6a74ff56e2e&encoded=0&v=paper_preview&mkt=zh-cn
[11] SCHEIDING S, GEBHARDT A, DAMM C, et al.Method for manufacturing a mirror comprising at least one cavity and optical mirror: USA, 20140247512[P]. 2014-09-04.
[12] SWEENEY M, ACREMAN M, VETTESE T, et al.Application and testing of additive manufacturing for mirrors and precision structures[J]. Proceedings of SPIE, 2015, 9574: 957406. doi: 10.1117/12.2189202
[13] HILPERT E, HARTUNG J, RISSE S, et al.Precision manufacturing of a lightweight mirror body made by selective laser melting[J]. Precision Engineering, 2018, 53: 310-317. doi: 10.1016/j.precisioneng.2018.04.013
[14] BRUNELLE M, FERRALLI I, WHITSITT R, et al.Current use and potential of additive manufacturing for optical applications[J]. Proceedings of SPIE, 2017, 10448: 104480P. https://www.researchgate.net/publication/320435771_Current_use_and_potential_of_additive_manufacturing_for_optical_applications
[15] MICI J, ROTHENBERG B, BRISSON E, et al.Optomechanical performance of 3D-printed mirrors with embedded cooling channels and substructures[J]. Proceedings of SPIE, 2015, 9573: 957306. doi: 10.1117/12.2188533
[16] HILPERT E, HARTUNG J, VON LUKOWICZ H, et al.Design, additive manufacturing, processing, and characterization of metal mirror made of aluminum silicon alloy for space applications[J]. Optical Engineering, 2019, 58(9): 092613. http://cn.bing.com/academic/profile?id=dc5a9ae9667c5d129b63370691638461&encoded=0&v=paper_preview&mkt=zh-cn
[17] HARTUNG J, BEIER M, RISSE S. Novel applications based on freeform technologies[J]. Proceedings of SPIE, 2018, 10692: 106920K. http://cn.bing.com/academic/profile?id=9d05603193fdbc43e0a07f8ab6c38efb&encoded=0&v=paper_preview&mkt=zh-cn
[18] HEIDLER N, HILPERT E, HARTUNG J, et al.Additive manufacturing of metal mirrors for TMA telescope[J]. Proceedings of SPIE, 2018, 10692: 106920C. http://cn.bing.com/academic/profile?id=3ab85a4f2ff00f97f9e59fc78e4986e2&encoded=0&v=paper_preview&mkt=zh-cn
[19] ROULET M, ATKINS C, HUGOT E, et al.3D printing for astronomical mirrors[J]. Proceedings of SPIE, 2018, 10675: 1067504. http://cn.bing.com/academic/profile?id=416c88283bdb13bd34136daef6ed5ba8&encoded=0&v=paper_preview&mkt=zh-cn
[20] STAMPFL J, HATZENBICHLER M. Additive Manufacturing Technologies[M]. LAPERRIÉRE L, REINHART G. The International Academy for Production Engineering. Berlin, Heidelberg: Springer, 2014: 20-27.
[21] ATKINS C, FELDMAN C, BROOKS D, et al.Topological design of lightweight additively manufactured mirrors for space[J]. Proceedings of SPIE, 2018, 10706: 107060I. http://cn.bing.com/academic/profile?id=6446e0a09e136c8c7f728b9cc0e7e112&encoded=0&v=paper_preview&mkt=zh-cn
[22] COMSTOCK Ⅱ L E, CRIFASI J C, ROY B P, et al.Mirror substrates with highly finishable corrosion-resistant coating: USA, 20160097885[P]. 2016-04-07.
[23] National Aeronautics and Space Administration. Additive manufactured very light weight diamond turned aspheric mirror[R].Greenbelt, Maryland: SBIR/STTR, 2017.
[24] HERZOG H, SEGAL J, SMITH J, et al.Optical fabrication of lightweighted 3D printed mirrors[J]. Proceedings of SPIE, 2015, 9573: 957308. doi: 10.1117/12.2188197
[25] LEUTERITZ G, LACHMAYER R. Additive manufacturing of reflective optics: evaluating finishing methods[J]. Proceedings of SPIE, 2018, 10523: 105230N. http://cn.bing.com/academic/profile?id=da130d753f75d35bc3b1e89e9ee155c6&encoded=0&v=paper_preview&mkt=zh-cn
[26] ATKINS C, FELDMAN C, BROOKS D, et al.Additive manufactured X-ray optics for astronomy[J]. Proceedings of SPIE, 2017, 10399: 103991G. http://cn.bing.com/academic/profile?id=eb8eadcc24f8062436604af9e24e7d35&encoded=0&v=paper_preview&mkt=zh-cn
[27] FELDMAN C, ATKINS C, BROOKS D, et al.Design and modeling of an additive manufactured thin shell for X-ray astronomy[J]. Proceedings of SPIE, 2017, 10399: 103991H. http://cn.bing.com/academic/profile?id=27d80bd4e329ecd165212eb810fb0977&encoded=0&v=paper_preview&mkt=zh-cn
[28] EBERLE S, REUTLINGER A, CURZADD B, et al.Additive manufacturing of an AlSi40 mirror coated with electroless nickel for cryogenic space applications[J]. Proceedings of SPIE, 2019, 11180: 1118015. http://cn.bing.com/academic/profile?id=7d15af765536e3c9797933e0f51548fd&encoded=0&v=paper_preview&mkt=zh-cn
[29] 唐鹏钧, 何晓磊, 杨斌, 等.激光选区熔化用AlSi10Mg粉末显微组织与性能[J].航空材料学报, 2018, 38(1): 47-53. http://d.old.wanfangdata.com.cn/Periodical/hkclxb201801006

TANG P J, HE X L, YANG B, et al.Microstructure and properties of AlSi10Mg powder for selective laser melting[J]. Journal of Aeronautical Materials, 2018, 38(1): 47-53. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkclxb201801006
[30] 丁莹, 杨海欧, 白静, 等.激光立体成形AlSi10Mg合金的微观组织及力学性能[J].中国表面工程, 2018, 31(4): 46-54. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=BMGC201804006

DING Y, YANG H O, BAI J, et al.Microstructure and mechanical property of AlSi10Mg alloy prepared by laser solid forming[J]. China Surface Engineering, 2018, 31(4): 46-54. (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=BMGC201804006
[31] 胡瑞.基于拓扑优化的空间反射镜与柔性支撑结构设计方法[D].大连: 大连理工大学, 2017.

HU R. Topology optimization-based design method of space mirror and flexible support structure[D]. Dalian: Dalian University of Technology, 2017. (in Chinese)
[32] 刘君欢.面向增材制造的拓扑优化结果精细化设计[D].大连: 大连理工大学, 2016.

LIU J H. Refined design of topology optimization results for additive manufacturing[D]. Dalian: Dalian University of Technology, 2016. (in Chinese)
[33] 叶虎勇, 陈桂林.地球同步轨道三轴稳定卫星的扫描镜设计及考虑[J].红外技术, 2003, 25(6): 1-5, 9. doi: 10.3969/j.issn.1001-8891.2003.06.001

YE H Y, CHEN G L. Scanning mirror design considerations of 3-axis stability satellite[J]. Infrared Technology, 2003, 25(6): 1-5, 9. (in Chinese) doi: 10.3969/j.issn.1001-8891.2003.06.001
[34] 谢启明, 杨静, 徐放, 等.金属非球面反射镜的加工和检测技术[J].红外技术, 2015, 37(2): 119-123. http://d.old.wanfangdata.com.cn/Periodical/hwjs201502007

XIE Q M, YANG J, XU F, et al.Manufacturing and test technology for metal aspherical reflector[J]. Infrared Technology, 2015, 37(2): 119-123. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hwjs201502007
[35] SCHAEFER J P. High precision mirror, and a method of making it: USA, 20040165296[P]. 2004-08-26.
[36] SCHAEFER J P. Advanced metal mirror processing for tactical ISR systems[J]. Proceedings of SPIE, 2013, 8713: 871306. doi: 10.1117/12.2015496
[37] HARRIS G G, MITCHELL D B, BROWN D J, et al.Method and apparatus for fabricating a precision optical surface: USA, 8398251[P]. 2013-03-19.
[38] RISSE S, GEBHARDT A, PESCHEL T, et al.Substrate made of an aluminum-silicon alloy or crystalline silicon, metal mirror, method for the production thereof, and use thereof: USA, 20130057952[P]. 2013-03-07.
[39] HOULLIER T, ROUSSELET N, SURREL Y, et al.Advanced optical freeform substrates fabricated by ceramic 3D printing and controlled by deflectometry[J]. Proceedings of SPIE, 2018, 10692: 106920P. http://cn.bing.com/academic/profile?id=49f1f275160b7c31dcf524410fb442a6&encoded=0&v=paper_preview&mkt=zh-cn
[40] ROULET M, HUGOT E, ATKINS C, et al.Superpolished OAPs for WFIRST CGI[J]. Proceedings of SPIE, 2018, 10698: 106982Q.
[41] HEINRICH A, BÖRRET R, MERKEL M, et al.Additive manufacturing of reflective and transmissive optics: potential and new solutions for optical systems[J]. Proceedings of SPIE, 2018, 10523: 1052302. http://cn.bing.com/academic/profile?id=849c7d71a65cb862b18f39e87873af3a&encoded=0&v=paper_preview&mkt=zh-cn