[1] BURSCHKA J, PELLET N, MOON S J, et al.. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458):316-319. doi: 10.1038/nature12340
[2] ZHAO Y X, ZHU K.Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications[J]. Chemical Society Reviews, 2016, 45(3):655-689. doi: 10.1039/C4CS00458B
[3] TAN ZH K, MOGHADDAM R S, LAI M L, et al.. Bright light-emitting diodes based on organometal halide perovskite[J]. Nature Nanotechnology, 2014, 9(9):687-692. doi: 10.1038/nnano.2014.149
[4] YU W L, LI F, WANG H, et al.. Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells[J]. Nanoscale, 2016, 8(11):6173-6179. doi: 10.1039/C5NR07758C
[5] SHI D, ADINOLFI V, COMIN R, et al.. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 2015, 347(6221):519-522. doi: 10.1126/science.aaa2725
[6] DONG Q F, FANG Y J, SHAO Y CH, et al.. Electron-hole diffusion lengths>175μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 2015, 347(6225):967-970. doi: 10.1126/science.aaa5760
[7] ZHOU H P, CHEN Q, LI G, et al.. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345(6196):542-546. doi: 10.1126/science.1254050
[8] HAO F, STOUMPOS C C, CAO D H, et al.. Lead-free solid-state organic-inorganic halide perovskite solar cells[J]. Nature Photonics, 2014, 8(6):489-494. doi: 10.1038/nphoton.2014.82
[9] MA CH, SHI Y M, HU W J, et al.. Heterostructured WS2/CH3NH3PbI3photoconductors with suppressed dark current and enhanced photodetectivity[J]. Advanced Materials, 2016, 28(19):3683-3689. doi: 10.1002/adma.201600069
[10] LIU M ZH, JOHNSTON M B, SNAITH H J.Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467):395-398. doi: 10.1038/nature12509
[11] JEON N J, NOH J H, KIM Y C, et al.. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nature Materials, 2014, 13(9):897-903. doi: 10.1038/nmat4014
[12] XING G CH, MATHEWS N, SUN SH Y, et al.. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 42(6156):344-347.
[13] STRANKS S D, EPERON G E, GRANCINI G, et al.. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156):341-344. doi: 10.1126/science.1243982
[14] MARCHIORO A, TEUSCHER J, FRIEDRICH D, et al.. Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells[J]. Nature Photonics, 2014, 8(3):250-255. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d63ca0b74c4db18927acc652d2f40017
[15] EDRI E, KIRMAYER S, MUKHOPADHYAY S, et al.. Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3-xClx perovskite solar cells[J]. Nature Communications, 2014, 5:3461. doi: 10.1038/ncomms4461
[16] BEGUM R, PARIDA M R, ABDELHADY A L, et al.. Engineering interfacial charge transfer in CsPbBr3 perovskite nanocrystals by heterovalent doping[J]. Journal of the American Chemical Society, 2017, 139(2):731-737. doi: 10.1021/jacs.6b09575
[17] LIU J X, LENG J, WU K F, et al.. Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films[J]. Journal of the American Chemical Society, 2017, 139(4):1432-1435. doi: 10.1021/jacs.6b12581
[18] FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Ramanspectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 1974, 26(2):163-166. doi: 10.1016/0009-2614(74)85388-1
[19] LOMBARDI J R, BIRKE R L. A unified approach to surface-enhanced Raman spectroscopy[J]. The Journal of Physical Chemistry C, 2008, 112(14):5605-5617. doi: 10.1021/jp800167v
[20] BELL S E J, SIRIMUTHU N M S. Quantitative surface-enhanced Raman spectroscopy[J]. Chemical Society Reviews, 2008, 37(5):1012-1024. doi: 10.1039/b705965p
[21] PARK S, YANG P X, CORREDOR P, et al.. Transition metal-coated nanoparticle films:vibrational characterization with surface-enhanced Raman scattering[J]. Journal of the American Chemical Society, 2002, 124(11):2428-2429. doi: 10.1021/ja017406b
[22] KNEIPP K, MOSKOVITS M, KNEIPP H. Surface-Enhanced Raman Scattering: Physics and Applications[M]. Berlin, Germany: Springer, 2006.
[23] LOMBARDI J R, BIRKE R L. A unified view of surface-enhanced raman scattering[J]. Accounts of Chemical Research, 2009, 42(6):734-742. doi: 10.1021/ar800249y
[24] YAMADA H, YAMAMOTO Y, TANI N. Surface-enhanced raman scattering(SERS) of adsorbed molecules on smooth surfaces of metals and a metal-oxide[J]. Chemical Physics Letters, 1982, 86(4):397-400. doi: 10.1016/0009-2614(82)83531-8
[25] YAMADA H, YAMAMOTO Y. Surface enhanced raman scattering(SERS) of chemisorbed species on various kinds of metals and semiconductors[J]. Surface Science, 1983, 134(1):71-90. doi: 10.1016/0039-6028(83)90312-6
[26] LING X, XIE L M, FANG Y, et al.. Can graphene be used as a substrate for raman enhancement?[J]. Nano Letters, 2010, 10(2):553-561. doi: 10.1021/nl903414x
[27] LIVINGSTONE R, ZHOU X C, TAMARGO M C, et al.. Surface enhanced raman spectroscopy of pyridine on CdSe/ZnBeSe quantum dots grown by molecular beam epitaxy[J]. The Journal of Physical Chemistry C, 2010, 114(41):17460-17464. doi: 10.1021/jp105619m
[28] JI W, KITAHAMA Y, XUE X X, et al.. Generation of pronounced resonance profile of charge-transfer contributions to surface-enhanced raman scattering[J]. The Journal of Physical Chemistry C, 2012, 116(3):2515-2520. doi: 10.1021/jp209947p
[29] SUN ZH H, WANG CH X, YANG J X, et al.. Nanoparticle metal-semiconductor charge transfer in ZnO/PATP/Ag assemblies by surface-enhanced Raman spectroscopy[J]. The Journal of Physical Chemistry C, 2008, 112(15):6093-6098. doi: 10.1021/jp711240a
[30] MAO ZH, SONG W, XUE X X, et al.. Multiphonon resonant raman scattering and photoinduced charge-transfer effects at ZnO-molecule interfaces[J]. The Journal of Physical Chemistry C, 2012, 116(51):26908-26918. doi: 10.1021/jp3092573
[31] WANG X L, WANG Y, SUI H M, et al.. Investigation of charge transfer in Ag/N719/TiO2 interface by surface-enhanced raman spectroscopy[J]. The Journal of Physical Chemistry C, 2016, 120(24):13078-13086. doi: 10.1021/acs.jpcc.6b03228
[32] TARAKESHWAR P, PALMA J L, FINKELSTEIN-SHAPIRO D, et al.. SERS as a probe of charge-transfer pathways in hybrid dye/molecule-metal oxide complexes[J]. The Journal of Physical Chemistry C, 2014, 118(7):3774-3782. doi: 10.1021/jp410725w
[33] YU ZH, YU W L, XING J, et al.. Charge transfer effects on resonance-enhanced raman scattering for molecules adsorbed on single-crystalline perovskite[J]. ACS Photonics, 2018, 5(4):1619-1627. doi: 10.1021/acsphotonics.8b00152
[34] MACULAN G, SHEIKH A D, ABDELHADY A L, et al.. CH3NH3PbCl3 single crystals:inverse temperature crystallization and visible-blind UV-photodetector[J]. The Journal of Physical Chemistry Letters, 2015, 6(19):3781-3786. doi: 10.1021/acs.jpclett.5b01666
[35] BAIKIE T, BARROW N S, FANG Y A, et al.. A combined single crystal neutron/X-ray diffraction and solid-state nuclear magnetic resonance study of the hybrid perovskites CH3NH3PbX3(X=I, Br and Cl)[J].Journal of Materials Chemistry A, 2015, 3(17):9298-9307. doi: 10.1039/C5TA01125F
[36] LING X, FANG W J, LEE Y H, et al.. Raman enhancement effect on two-dimensional layered materials:graphene, h-BN and MoS2[J]. Nano Letters, 2014, 14(6):3033-3040. doi: 10.1021/nl404610c
[37] TAN Y, MA L N, GAO ZH B, et al.. Two-dimensional heterostructure as a platform for surface-enhanced raman scattering[J]. Nano Letters, 2017, 17(4):2621-2626. doi: 10.1021/acs.nanolett.7b00412
[38] BASOVA T V, KOLESOV B A. Raman spectra of copper phthalocyanin:experiment and calculation[J]. Journal of Structural Chemistry, 2000, 41(5):770-777. doi: 10.1023/A:1004802000669
[39] WANG M F, SPATARU T, LOMBARDI J R, et al.. Time resolved surface enhanced Raman scattering studies of 3-hydroxyflavone on a Ag electrode[J]. The Journal of Physical Chemistry C, 2007, 111(7):3044-3052. doi: 10.1021/jp0650937
[40] WANG M F, TESLOVA T, XU F, et al.. Raman and surface enhanced Raman scattering of 3-hydroxyflavone[J]. The Journal of Physical Chemistry C, 2007, 111(7):3038-3043. doi: 10.1021/jp062100i
[41] KIM Y C, YANG T Y, JEON N J, et al.. Engineering interface structures between lead halide perovskite and copper phthalocyanine for efficient and stable perovskite solar cells[J]. Energy & Environmental Science, 2017, 10(10):2109-2116. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f2ae225853e3af2cc653c9b936edfb7a
[42] NIU B J, WU L L, TANG W, et al.. Enhancement of near-band edge emission of Au/ZnO composite nanobelts by surface plasmon resonance[J]. CrystEngComm, 2011, 13(11):3678-3681. doi: 10.1039/c1ce05175j
[43] SU Y H, TU S L, TSENG S W, et al.. Influence of surface plasmon resonance on the emission intermittency of photoluminescence from gold nano-sea-urchins[J]. Nanoscale, 2010, 2(12):2639-2646. doi: 10.1039/c0nr00330a
[44] BABA A, AOKI N, SHINBO K, et al.. Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells[J]. ACS Applied Materials & Interfaces, 2011, 3(6):2080-2084. doi: 10.1021/am200304x
[45] SU Y H, KE Y F, CAI SH L, et al.. Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell[J]. Light:Science & Applications, 2012, 1(6):e14. doi: 10.1038/lsa.2012.14