[1] LIEBHART H, HERDRICH G, FASOULAS S. Advances for radiation modeling for earth re-entry in PARADE: application to the STARDUST atmospheric entry, AIAA-2012-3196[R]. New orleans, Louisiana: AIAA, 2012.
[2] GRINSTEAD J H, JENNISKENS P, CASSELL A M, et al.. Airborne observation of the hayabusa sample return capsule reentry, AIAA-2011-3329[R]. Honolulu, Hawaii: AIAA, 2011.
[3] HERMANN T, LÖHLE S, ZANDER F, et al... Characterization of a reentry plasma wind-tunnel flow with vacuum-ultraviolet to near-infrared spectroscopy[J]. Journal of Thermophysics and Heat Transfer, 2016, 30(3):673-688. doi: 10.2514/1.T4695
[4] PORAT H, MORGAN R G, MCINTYRE T J. Study of radiative heat transfer in Titan atmospheric entry[C]. Proceedings of 28th International Congress of the Aeronautical Sciences, Launceston, 2012.
[5] JOHNSTON C O, GNOFFO P A, MAZAHERI A. Influence of coupled radiation and ablation on the aerothermodynamic environment of planetary entry vehicles[J]. RTO Lecture Series, Von Karman Inst. for Fluid Dynamics, Rhode-St-Genèse, Belgium, 2013, 218:1-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gT/9jUxQkZ4dHqaZcqmM81P8hfii4jsZ36qGwGItmT0=
[6] BRANDIS A M, JOHNSTON C O. Characterization of stagnation-point heat flux for earth entry AIAA-2014-2374[R]. Atlanta: AIAA, 2014.
[7] GUPTA R N. Aerothermodynamic analysis of stardust sample return capsule with coupled radiation and ablation[J]. Journal of Spacecraft and Rockets, 2000, 37(4):507-514. doi: 10.2514/2.3592
[8] GNOFFO P A, JOHNSTON C O, KLEB B B. Challenges to computational aerothermodynamic simulation and validation for planetary entry vehicle analysis, NASA RTO-EN-AVT-186[R]. Washington: NASA, 2010.
[9] JACOBS P, MORGAN R, BRANDIS A, et al.. Design, operation and testing in expansion tube facilities for super-orbital re-entry[C]. STO-AVT-VKI Lecture Series Radiation and Gas-Surface Interaction Phenomena in High Speed Re-Entry (2013-AVT-218). 2013: 5-1-5-65. https://espace.library.uq.edu.au/view/UQ:326742
[10] JACOBS C M, MCLNTYRE T J, MORGAN R G, et al.. Radiative heat transfer measurements in low-density titan atmospheres[J]. Journal of Thermophysics and Heat Transfer, 2015, 29(4):835-844. doi: 10.2514/1.T4519
[11] HOLLIS B R, STRIEPE S A, WRIGHT M J, et al.. Prediction of the aerothermodynamic environment of the huygens probe. AIAA-2005-4816[R]. Toronto: AIAA, 2005.
[12] PARK C. Nonequilibrium Air Radiation (NEQAIR) Program: User's Manual, NASA-TM-86707[R]. Washington: NASA, 1985.
[13] THOMAS G M, MENARD W A. Experimental measurements of nonequilibrium and equilibrium radiation from planetary atmospheres[J]. AIAA Journal, 1966, 4(2):227-237. doi: 10.2514/3.3423
[14] GÖKÇEN T. N2-CH4-Ar chemical kinetic model for simulations of atmospheric entry to Titan, AIAA-2004-2469[R]. Portland: AIAA, 2004.
[15] BOSE D, WRIGHT M J, BOGDANOFF D W, et al.. Modeling and experimental assessment of CN radiation behind a strong shock wave[J]. Journal of Thermophysics and Heat Transfer, 2006, 20(2):220-230. doi: 10.2514/1.16869
[16] LABRACHERIE L, BILLIOTTE M, HOUAS L. Shock-tube analysis of argon influence in Titan radiative environment[J]. Journal of Thermophysics and Heat Transfer, 1996, 10(1):162-168. doi: 10.2514/3.767
[17] LEWIS S W, MORGAN R G, MCINTYRE T J, et al.. Expansion tunnel experiments of earth reentry flow with surface ablation[J]. Journal of Spacecraft and Rockets, 2016, 53(5):887-899. doi: 10.2514/1.A33267
[18] SHEIKH U A, MORGAN R G, MCINTYRE T J. Vacuum ultraviolet spectral measurements for superorbital earth entry in X2 expansion tube[J]. AIAA Journal, 2015, 53(12):3589-3602. doi: 10.2514/1.J054027
[19] SHEIKH U A, JACOBS C, LAUX C O, et al.. Measurements of radiating flow fields in the vacuum ultraviolet[C]. Proceedings of the 29th International Symposium on Shock Waves, Springer, 2013: 653-658.
[20] BRANDIS A M, MORGAN R G, MCINTYRE T J, et al.. Nonequilibrium radiation intensity measurements in simulated Titan atmospheres[J]. Journal of Thermophysics and Heat Transfer, 2010, 24(2):291-300. doi: 10.2514/1.44482
[21] 杨乾锁, 余西龙, 姜乃波, 等.激波波后氮分子发射光谱的测量[J].流体力学实验与测量, 2000, 14(3):57-60+65. doi: 10.3969/j.issn.1672-9897.2000.03.011

YANG Q S, YU X L, JIANG N B, et al.. Spectral measurement of nitrogen emission behind normal shock wave[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(3):57-60+65. (in Chinese) doi: 10.3969/j.issn.1672-9897.2000.03.011
[22] 杨虹, 张雅声, 丁文哲.飞艇红外探测系统探测高超声速目标性能研究[J].中国光学, 2016, 9(5):596-605. http://www.chineseoptics.net.cn/CN/abstract/abstract9447.shtml

YANG H, ZHANG Y SH, DING W ZH. Detectability of airship infrared detection system to hypersonic vehicle[J]. Chinese Optics, 2016, 9(5):596-605. (in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9447.shtml
[23] 孟凡胜, 熊仁生, 刘朝晖.高速再入体热辐射模型的分析与修正[J].光学 精密工程, 2006, 14(8):574-578. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc200604009

MENG F SH, XIONG R SH, LIU CH H. Analysis of hypersonic reentry radiation model[J]. Opt. Precision Eng., 2006, 14(8):574-578. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc200604009
[24] LIN X, YU X L, LI F, et al.. Measurements of non-equilibrium and equilibrium temperature behind a strong shock wave in simulated martian atmosphere[J]. Acta Mechanica Sinica, 2012, 28(5):1293-1302. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb-e201205008
[25] BRANDIS A M, GOLLAN R J, SCOTT M P, et al.. Expansion tube operating, conditions for studying nonequilibrium radiation relevant to Titan aerocapture, AIAA-2006-4517[R]. Sacramemto: AIAA, 2006.