[1] KERSEY A D, DAVIS M A, PATRICK H J, et al. Fiber grating sensors[J]. Journal of Lightwave Technology, 1997, 15(8): 1442-1463. doi: 10.1109/50.618377
[2] ZHAO CH L, YANG X F, DEMOKAN M S, et al. Simultaneous temperature and refractive index measurements using a 3° slanted multimode fiber Bragg grating[J]. Journal of Lightwave Technology, 2006, 24(2): 879-883. doi: 10.1109/JLT.2005.862471
[3] MAJUMDER M, GANGOPADHYAY T K, CHAKRABORTY A K, et al. Fibre Bragg gratings in structural health monitoring-present status and applications[J]. Sensors and Actuators A:Physical, 2008, 147(1): 150-164. doi: 10.1016/j.sna.2008.04.008
[4] DAI Y B, LIU Y J, LENG J S, et al. A novel time-division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring[J]. Optics and Lasers in Engineering, 2009, 47(10): 1028-1033. doi: 10.1016/j.optlaseng.2009.05.012
[5] MIHAILOV S J. Fiber Bragg grating sensors for harsh environments[J]. Sensors, 2012, 12(2): 1898-1918. doi: 10.3390/s120201898
[6] LAFFONT G, COTILLARD R, FERDINAND P. Multiplexed regenerated fiber Bragg gratings for high-temperature measurement[J]. Measurement Science and Technology, 2013, 24(9): 094010. doi: 10.1088/0957-0233/24/9/094010
[7] WU W. Research and application of large capacity fiber grating sensor demodulation system[D]. Wuhan: Wuhan University of Technology, 2009: 3-4. (in Chinese).
[8] LIU SH, HAN X Y, XIONG Y C, et al. Distributed vibration detection system based on weak fiber Bragg grating array[J]. Chinese Journal of Lasers, 2017, 44(2): 0210001. (in Chinese) doi: 10.3788/CJL201744.0210001
[9] LI Y, XU M, WANG Q Y, et al. Strain sensing properties of UV-written fiber grating[J]. Chinese Journal of Luminescence, 2000, 21(1): 61-63. (in Chinese) doi: 10.3321/j.issn:1000-7032.2000.01.014
[10] ZHANG ZH Y. One-piece flow target type based on fiber Bragg grating sensing technology[J]. Chinese Journal of Luminescence, 2020, 41(2): 217-223. (in Chinese)
[11] LI L B. Research on capillary-based fiber F-P vibration sensor[D]. Wuhan: Huazhong University of Science and Technology, 2014: 6-7. (in Chinese).
[12] CAI N. The simulation and demodulation of optical fiber FP sensing structure[D]. Wuhan: Huazhong University of Science and Technology, 2019: 2-5. (in Chinese).
[13] CAPMANY J, NOVAK D. Microwave photonics combines two worlds[J]. Nature Photonics, 2007, 1(6): 319-330. doi: 10.1038/nphoton.2007.89
[14] YAO J P. Arbitrary waveform generation[J]. Nature Photonics, 2010, 4(2): 79-80. doi: 10.1038/nphoton.2009.276
[15] ZHENG D, ZOU X H, PAN W, et al. Advances of optical fiber sensing interrogation techniques based on microwave photonics[J]. Study on Optical Communications, 2018, 44(6): 21-30. (in Chinese)
[16] SAUER M, KOBYAKOV A, GEORGE J. Radio over fiber for Picocellular network architectures[J]. Journal of Lightwave Technology, 2007, 25(11): 3301-3320. doi: 10.1109/JLT.2007.906822
[17] GHELFI P, LAGHEZZA F, SCOTTI F, et al. A fully photonics-based coherent radar system[J]. Nature, 2014, 507(7492): 341-345. doi: 10.1038/nature13078
[18] ZOU X H, BAI W L, CHEN W, et al. Microwave photonics for featured applications in high-speed railways: communications, detection, and sensing[J]. Journal of Lightwave Technology, 2018, 36(19): 4337-4346. doi: 10.1109/JLT.2018.2813663
[19] RICCHIUTI A L, BARRERA D, SALES S, et al. Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques[J]. Optics Express, 2013, 21(23): 28175-28181. doi: 10.1364/OE.21.028175
[20] RICCHIUTI A L, HERVÁS J, BARRERA D, et al. Microwave photonics filtering technique for interrogating a very-weak fiber Bragg grating cascade sensor[J]. IEEE Photonics Journal, 2014, 6(6): 5501410.
[21] XIA L, CHENG R, LI W, et al. Identical FBG-based quasi-distributed sensing by monitoring the microwave responses[J]. IEEE Photonics Technology Letters, 2015, 27(3): 323-325. doi: 10.1109/LPT.2014.2370650
[22] WERZINGER S, BERGDOLT S, ENGELBRECHT R, et al. Quasi-distributed fiber Bragg grating sensing using stepped incoherent optical frequency domain Reflectometry[J]. Journal of Lightwave Technology, 2016, 34(22): 5270-5277. doi: 10.1109/JLT.2016.2614581
[23] HERVÁS J, BARRERA D, MADRIGAL J, et al. Microwave photonics filtering interrogation technique under coherent regime for hot spot detection on a weak FBGs array[J]. Journal of Lightwave Technology, 2018, 36(4): 1039-1045. doi: 10.1109/JLT.2018.2793161
[24] CHENG R, XIA L, SIMA C T, et al. Ultra-short FBG based distributed sensing using shifted optical Gaussian filters and microwave-network analysis[J]. Optics Express, 2016, 24(3): 2466-2484. doi: 10.1364/OE.24.002466
[25] HERVÁS J, FERNÁNDEZ-POUSA C R, BARRERA D, et al. An interrogation technique of FBG cascade sensors using wavelength to radio-frequency delay mapping[J]. Journal of Lightwave Technology, 2015, 33(11): 2222-2227. doi: 10.1109/JLT.2015.2409318
[26] ZHENG D, MADRIGAL J, BARRERA D, et al. Microwave photonic filtering for interrogating FBG-based multicore fiber curvature sensor[J]. IEEE Photonics Technology Letters, 2017, 29(20): 1707-1710. doi: 10.1109/LPT.2017.2742579
[27] WU N SH, XIA L, SONG Y M, et al. Simultaneous differential interrogation for Multiple FBGs based on Crossed Sagnac loops and microwave network[J]. Journal of Lightwave Technology, 2019, 37(23): 5953-5960. doi: 10.1109/JLT.2019.2944401
[28] ZHOU L. Research on high-speed demodulation of weak grating array based on microwave photonics and chromatic dispersion[D]. Wuhan: Wuhan University of Technology, 2018: 16-18. (in Chinese).
[29] DONG X Y, SHAO L Y, FU H Y, et al. Intensity-modulated fiber Bragg grating sensor system based on radio-frequency signal measurement[J]. Optics Letters, 2008, 33(5): 482-484. doi: 10.1364/OL.33.000482
[30] CHENG R, XIA L, YAN J, et al. Radio frequency FBG-based interferometer for remote adaptive strain monitoring[J]. IEEE Photonics Technology Letters, 2015, 27(15): 1577-1580. doi: 10.1109/LPT.2015.2406112
[31] WANG Y P, ZHANG J J, COUTINHO O, et al. Interrogation of a linearly chirped fiber Bragg grating sensor with high resolution using a linearly chirped optical waveform[J]. Optics Letters, 2015, 40(21): 4923-4926. doi: 10.1364/OL.40.004923
[32] ZHOU L, LI ZH Y, XIANG N, et al. High-speed demodulation of weak fiber Bragg gratings based on microwave photonics and chromatic dispersion[J]. Optics Letters, 2018, 43(11): 2430-2433. doi: 10.1364/OL.43.002430
[33] LIANG X, XIANG N, LI ZH Y, et al. Precision dynamic sensing with ultra-weak fiber Bragg grating arrays by wavelength to frequency transform[J]. Journal of Lightwave Technology, 2019, 37(14): 3526-3531. doi: 10.1109/JLT.2019.2917602
[34] WANG J Q, LI ZH Y, YANG Q, et al. Interrogation of a large-capacity densely spaced fiber Bragg grating array using chaos-based incoherent-optical frequency domain reflectometry[J]. Optics Letters, 2019, 44(21): 5202-5205. doi: 10.1364/OL.44.005202
[35] YANG Q, WANG J Q, FU X L, et al.. High-spatial resolution demodulation of weak FBGs based on incoherent optical frequency domain Reflectometry using a chaotic laser[C]. Proceedings of 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), IEEE, 2019: 994-998.
[36] YANG Y G, WANG M G, SHEN Y, et al. Refractive index and temperature sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating[J]. IEEE Photonics Journal, 2018, 10(1): 6800309.
[37] ZHANG N H, WU B L, WANG M G, et al. High-sensitivity sensing for relative humidity and temperature based on an optoelectronic oscillator using a polyvinyl alcohol-fiber Bragg grating-Fabry Perot filter[J]. IEEE Access, 2019, 7: 148756-148763. doi: 10.1109/ACCESS.2019.2946991
[38] XU Z W, SHU X W, FU H Y. Fiber Bragg grating sensor interrogation system based on an optoelectronic oscillator loop[J]. Optics Express, 2019, 27(16): 23274-23281. doi: 10.1364/OE.27.023274
[39] WANG W X, LIU Y, DU X W, et al. Ultra-stable and real-time Demultiplexing system of strong fiber Bragg grating sensors based on low-frequency optoelectronic oscillator[J]. Journal of Lightwave Technology, 2020, 38(4): 981-988. doi: 10.1109/JLT.2019.2949682
[40] HUANG J, HUA L, LAN X W, et al. Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing[J]. Optics Express, 2013, 21(15): 18152-18159. doi: 10.1364/OE.21.018152
[41] HUANG J, LAN X W, LUO M, et al. Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry[J]. Optics Express, 2014, 22(15): 18757-18769. doi: 10.1364/OE.22.018757
[42] HUA L W, SONG Y, HUANG J, et al. Femtosecond laser fabricated multimode fiber sensors interrogated by optical-carrier-based microwave interferometry technique for distributed strain sensing[J]. Proceedings of SPIE, 2016, 9754: 97540V.
[43] BENÍTEZ J, BOLEA M, MORA J. Demonstration of multiplexed sensor system combining low coherence interferometry and microwave photonics[J]. Optics Express, 2017, 25(11): 12182-12187. doi: 10.1364/OE.25.012182
[44] HUA L W, SONG Y, CHENG B K, et al. Coherence-length-gated distributed optical fiber sensing based on microwave-photonic interferometry[J]. Optics Express, 2017, 25(25): 31362-31376. doi: 10.1364/OE.25.031362
[45] HUA L W. Microwave photonics for distributed sensing[D]. Clemson: Clemson University, 2017: 88-97.
[46] COELHO L C C, DE ALMEIDA J M M M, MOAYYED H, et al. Multiplexing of surface Plasmon resonance sensing devices on etched single-mode fiber[J]. Journal of Lightwave Technology, 2015, 33(2): 432-438. doi: 10.1109/JLT.2014.2386141
[47] LIU Q, JING ZH G, LIU Y Y, et al. Multiplexing fiber-optic Fabry-Perot acoustic sensors using self-calibrating wavelength shifting interferometry[J]. Optics Express, 2019, 27(26): 38191-38203. doi: 10.1364/OE.381197