[1] MANISHA P, JAYADEVAN R, SHEEBA V S. Content-based image retrieval through semantic image segmentation[J]. AIP Conference Proceedings, 2020, 2222(1): 030008.
[2] 叶润春. 显著性检测的优化模型及在图像压缩中的应用[D]. 合肥: 中国科学技术大学, 2018.

YE R CH. A model of optimizing saliency detection and its application in image compression[D]. Hefei: University of Science and Technology of China, 2018. (in Chinese).
[3] 王超. 基于立体视觉的目标识别与跟踪研究[D]. 大连: 大连理工大学, 2019.

WANG CH. Research on target recognition and tracking based on stereo vision[D]. Dalian: Dalian University of Technology, 2019. (in Chinese).
[4] 丁晨. 显著性检测与结构相似相结合的图像融合算法[D]. 西安: 陕西师范大学, 2019.

DING CH. A image fusion algorithm combining saliency detection and structural similarity[D]. Xi’an: Shaanxi Normal University, 2019. (in Chinese)
[5] GALIANO G, RAMÍREZ I, SCHIAVI E. Non-convex non-local reactive flows for saliency detection and segmentation[J]. Journal of Computational and Applied Mathematics, 2020, 377: 112873. doi: 10.1016/j.cam.2020.112873
[6] 崔丽群, 吴晓冬, 赵越. 基于CRF-MR的自顶向下显著性目标检测方法[J]. 计算机应用研究,2018,35(8):2535-2539. doi: 10.3969/j.issn.1001-3695.2018.08.074

CUI L Q, WU X D, ZHAO Y. Top-down saliency target detection dased on CRF-MR[J]. Application Research of Computers, 2018, 35(8): 2535-2539. (in Chinese) doi: 10.3969/j.issn.1001-3695.2018.08.074
[7] 程藜, 吴谨, 朱磊. 基于结构标签学习的显著性目标检测[J]. 液晶与显示,2016,31(7):726-732. doi: 10.3788/YJYXS20163107.0726

CHENG L, WU J, ZHU L. Salient object detection based on structured labels learning[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(7): 726-732. (in Chinese) doi: 10.3788/YJYXS20163107.0726
[8] 杜杰, 吴谨, 朱磊. 基于区域特征融合的RGBD显著目标检测[J]. 液晶与显示,2016,31(1):117-123. doi: 10.3788/YJYXS20163101.0117

DU J, WU J, ZHU L. RGBD salient object detection based on regional feature integration[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(1): 117-123. (in Chinese) doi: 10.3788/YJYXS20163101.0117
[9] YAN Y J, REN J CH, SUN G Y, et al. Unsupervised image saliency detection with gestalt-laws guided optimization and visual attention based refinement[J]. Pattern Recognition, 2018, 79: 65-78. doi: 10.1016/j.patcog.2018.02.004
[10] WU ZH, SU L, HUANG Q M. Cascaded partial decoder for fast and accurate salient object detection[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2019: 3907-3916.
[11] ACHANTA R, ESTRADA F, WILS P, et al.. Salient region detection and segmentation[C]. Proceedings of the 6th International Conference on Computer Vision Systems (ICVS), Springer, 2008: 66-75.
[12] CHENG M M, ZHANG G X, MITRA N J, et al.. Global contrast based salient region detection[C]. Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2011: 409-416.
[13] GOFERMAN S, ZELNIK-MANOR L, TAL A. Context-aware saliency detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10): 1915-1926. doi: 10.1109/TPAMI.2011.272
[14] FU K R, GONG CH, YANG J, et al. Superpixel based color contrast and color distribution driven salient object detection[J]. Image Communication, 2013, 28(10): 1448-1463.
[15] 孙君顶, 张毅, 李海华. 融合高低层多特征的显著性检测算法[J]. 液晶与显示,2019,34(4):430-438. doi: 10.3788/YJYXS20193404.0430

SUN J D, ZHANG Y, LI H H. Saliency detection algorithm integrating multiple features of high and low level[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(4): 430-438. (in Chinese) doi: 10.3788/YJYXS20193404.0430
[16] YANG CH, ZHANG L H, LU H CH, et al.. Saliency detection via graph-based manifold ranking[C]. Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2013: 3166-3173.
[17] WU X Y, MA X D, ZHANG J X, et al. Salient object detection via reliable boundary seeds and saliency refinement[J]. IET Computer Vision, 2019, 13(3): 302-311. doi: 10.1049/iet-cvi.2018.5013
[18] LI CH Y, YUAN Y CH, CAI W D, et al.. Robust saliency detection via regularized random walks ranking[C]. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2015: 2710-2717.
[19] WU X Y, MA X D, ZHANG J X, et al.. Salient object detection via deformed smoothness constraint[C]. Proceedings of the 25th IEEE International Conference on Image Processing (ICIP), IEEE, 2018: 2815-2819.
[20] XING Y, WANG Q H, REN H, et al. Optical arbitrary-depth refocusing for large-depth scene in integral imaging display based on reprojected parallax image[J]. Optics Communications, 2019, 433: 209-214. doi: 10.1016/j.optcom.2018.10.022
[21] WANG Y Q, YANG J G, GUO Y L, et al. Selective light field refocusing for camera arrays using bokeh rendering and superresolution[J]. IEEE Signal Processing Letters, 2019, 26(1): 204-208. doi: 10.1109/LSP.2018.2885213
[22] WANG Y Q, YANG J G, MO Y, et al. Disparity estimation for camera arrays using reliability guided disparity propagation[J]. IEEE Access, 2018, 6: 21840-21849. doi: 10.1109/ACCESS.2018.2827085
[23] FARSIU S, ROBINSON M D, ELAD M, et al. Fast and robust multiframe super resolution[J]. IEEE Transactions on Image Processing, 2004, 13(10): 1327-1344. doi: 10.1109/TIP.2004.834669
[24] LEE S, KIM G J, CHOI S. Real-time depth-of-field rendering using point splatting on per-pixel layers[J]. Computer Graphics Forum, 2008, 27(7): 1955-1962. doi: 10.1111/j.1467-8659.2008.01344.x
[25] ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282. doi: 10.1109/TPAMI.2012.120
[26] FREY B J, DUECK D. Clustering by passing messages between data points[J]. Science, 2007, 315(5814): 972-976. doi: 10.1126/science.1136800
[27] ZITNICK C L, DOLLÁR P. Edge boxes: locating object proposals from edges[C]. Proceedings of the 13th European Conference on Computer Vision (ECCV), Springer, 2014: 391-405.
[28] HONAUER K, JOHANNSEN O, KONDERMANN D, et al.. A dataset and evaluation methodology for depth estimation on 4D light fields[C]. Proceedings of the 13th Asian Conference on Computer Vision (ACCV), Springer, 2016: 19-34.