留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面等离子体激元纳米激光器技术及应用研究进展

陈泳屹 佟存柱 秦莉 王立军 张金龙

陈泳屹, 佟存柱, 秦莉, 王立军, 张金龙. 表面等离子体激元纳米激光器技术及应用研究进展[J]. 中国光学(中英文), 2012, 5(5): 453-463. doi: 10.3788/CO.20120505.0453
引用本文: 陈泳屹, 佟存柱, 秦莉, 王立军, 张金龙. 表面等离子体激元纳米激光器技术及应用研究进展[J]. 中国光学(中英文), 2012, 5(5): 453-463. doi: 10.3788/CO.20120505.0453
CHEN Yong-yi, TONG Cun-zhu, QIN Li, WANG Li-jun, ZHANG Jin-long. Progress in surface plasmon polariton nano-laser technologies and applications[J]. Chinese Optics, 2012, 5(5): 453-463. doi: 10.3788/CO.20120505.0453
Citation: CHEN Yong-yi, TONG Cun-zhu, QIN Li, WANG Li-jun, ZHANG Jin-long. Progress in surface plasmon polariton nano-laser technologies and applications[J]. Chinese Optics, 2012, 5(5): 453-463. doi: 10.3788/CO.20120505.0453

表面等离子体激元纳米激光器技术及应用研究进展

doi: 10.3788/CO.20120505.0453
基金项目: 

国家自然科学基金面上资助项目(No.61076064,No.61176046);吉林省科技厅资助项目(No.201105026,No.20116011)

详细信息
    作者简介:

    陈泳屹(1986-),男,吉林长春人,博士研究生,主要从事纳米光学与表面等离子体激光器等方面的研究。 E-mail:cyy2283@126.com 张金龙(1975-),男,吉林市人,副研究员,主要从事光电器件研制与开发等方面的研究。 E-mail:pled3588@yahoo.com.cn

    陈泳屹(1986-),男,吉林长春人,博士研究生,主要从事纳米光学与表面等离子体激光器等方面的研究。 E-mail:cyy2283@126.com 张金龙(1975-),男,吉林市人,副研究员,主要从事光电器件研制与开发等方面的研究。 E-mail:pled3588@yahoo.com.cn

    通讯作者:

    张金龙

  • 中图分类号: TN248.9;O439

Progress in surface plasmon polariton nano-laser technologies and applications

  • 摘要: 传统半导体激光器由于采用光学系统反馈而存在衍射极限,其腔长至少是其发射波长的一半,因此难以实现微小化。基于表面等离子体激元的纳米激光器可以实现深亚波长乃至纳米尺度的激光发射,而且现代微纳加工技术的逐步成熟,也为亚波长乃至纳米量级激光器的研制提供了成熟的技术条件。本文重点综述了国际上已成功实验验证的基于表面等离子体激元的纳米激光器的最新研究进展,综述了表面等离子体激元的基本原理,给出了若干种表面等离子体激元纳米激光器的结构和特点,指出该类激光器现存问题主要表现在激元损耗高及由此引起的制备工艺和电泵浦涉及的技术难题。文中最后展望了纳米激光器的应用和研究前景。

     

  • [1] SCHAWLOW A L,TOWNES C H. Infrared and optical masers[J]. Phy. Rev.,1958,112:1940-1949. [2] WANG Z B,JOSEPH N,LI L,et al.. A review of optical near-fields in particle/tip-assisted laser nanofabrication[J]. Mechanical Eng. Sci.,2010,224:1113-1125. [3] GUO W,WANG Z B,LI L,et al.. Near-field laser parallel nanofabrication of arbitrary-shaped patterns[J]. Appl. Phys. Lett.,2007,90:243101. [4] SCHULLER J A,BARNARD E S,CAI W SH,et al.. Plasmonics for extreme light concentration and manipulation[J]. Nature Mate.,2010,9:193-204. [5] BARNARD D K,BOZHEVOLNYI S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics,2010,4:83-91. [6] ANKER J N,HALL W P,LYANDRES O,et al.. Biosensing with plasmonic nanosensors[J]. Nature Mater.,2008,7:442-453. [7] DIONNE J A,DIEST K,SWEATLOCK L A,et al.. Ametal-oxide-Si field effect plasmonic modulator[J]. Nano Lett.,2009,9:897-902. [8] ZIJLSTRA P,CHON J W M,GU M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature,2009,459:410-413. [9] CHALLENER W A,PENG CH B,ITAGI A V,et al.. Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer[J]. Nature Photonics,2009,3:220-224. [10] 雷建国,刘天航,林景全,等. 表面等离子体激光的若干新应用[J]. 中国光学与应用光学,2010,3(5):432-439. LEI J G,LIU T H,LIN J Q,et al.. New applications of surface plasmon polaritons[J]. Chinese J. Opt. Appl. Opt.,2010,3(5):432-439.(in Chinese) [11] LIU JUAN,WANG Y T,XU L W,et al.. Contribution of surface plasmon polaritons to extraordinary optical transmission through metallic nanoslit[J]. Chinese J. Opt. Appl. Opt..,2010,3(1):33-37. [12] STIPE B C,STRAND T C,POON C C,et al.. Magnetic recording at 1: 5 Pb m-2 using an integrated plasmonic antenna[J]. Nature Photonics,2010,4:484-488. [13] BARNES W L,DEREUX A,EBBESEN T W S. Surface plasmon subwavelength optics[J]. Nature,2003,424:824-830. [14] BOZHEVOLNYI S I,VOLKOV V S,DEVAUX E,et al.. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature,2006,440:508-511. [15] AKIMOV A V,MUKHERJEE A,YU C L,et al.. Generation of single optical plasmons in metallic nanowires coupled to quantum dots[J]. Nature,2007,450:402-406. [16] LIEBERG B,Nylander C,NYLANDER M I. Surface plasmon resonance for gas detection and biosensing[J]. Sensors and Actuators,1983,4:299-304. [17] ATWATER A H. The promise of plasmonics[J]. Sci. Am.,2007,296(4):56-63. [18] PAN L,PARK Y,XIONG Y,et al.. Maskless plasmonic lithography at 22 nm resolution[J]. Scientific Reports,2011,1:175 [19] BERGMAN D J,STOCKMAN M I. Surface plasmon amplification by stimulated emission of radiation:quantum generation of coherent surface plasmons in nanosystems[J]. Phys. Rev. Lett.,2003,90:027402 [20] MAISER S A. Plasmonics:Fundamentals and Aplications[M]. Berlin:Springer-verlag,2006. [21] BRONGERSMA M L,KIK P G. Surface Plasmon Nanophotonics[M]. Berlin:Springer-verlag,2007. [22] RAETHER H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings[M]. Berlin:Springer-verlag,1988. [23] 顾本源.表面等离子体激元亚波长光学原理和新颖效应[J]. 物理,2007,36(4): 280-287. GU B Y. Surface plasmon subwavelength optics:principles and novel effects[J]. Physics,2007,36(4):280-287.(in Chinese) [24] OULTON R F,PILE D F P,LIU Y,et al.. Scattering of surface plasmon polaritons at abrupt surface interfaces:implications for nanoscale cavities[J]. Phys. Rev. B,2007,76:035408. [25] OZBAY E. Plasmonics:merging photonics and electronics at nanoscale dimensions[J]. Science,2006,311:189-193. [26] CONWAY J A,SAHNI S,SZKOPEK T. Plasmonic interconnects versus conventional interconnects:a comparison of latency,crosstalk and energy costs[J]. Opt. Express,2007,15(8):4474-4484. [27] JACOB Z,SHALAEV V M. Plasmonics goes quantum[J]. Science,2011,334:463-464. [28] KRASAVIN A V,ZAYATS A V. Silicon-based plasmonic waveguides[J]. Opt. Express,2010,18:11791-11799 [29] CHANG S W,LIN T R,CHUANG S L. Theory of plasmonic fabry-perot nanolasers[J]. Opt. Express,2010,18(14):15039-15053. [30] CHANG S W,CHUANG S L. Fundamental formulation for plasmonic nanolasers[J]. IEEE J. Quantum Elect.,2009,45(8):1014-1023. [31] STOCKMAN M I. Spasers explained[J]. Nature Photonics,2008,2: 327-329. [32] FORD G W,WEBER W H. Electromagnetic interactions of molecules with metal surfaces[J]. Physics Reports(Review Section for Physics Letters),1984,113(4):195-287. [33] LEON I D,BERINI P. Amplification of long-range surface plasmons by a dipolar gain medium[J]. Nature Photonics,2010,4:382-387. [34] ZHELUDEV N I,PROSVIRNIN S L,PAPASIMAKIS N,et al.. Lasing spaser[J]. Nature Photonics,2008,2:351-354. [35] ZHANG S,GENOV D A,WANG Y,et al.. Plasmon-induced transparency in metamaterials[J]. Phys. Rev. Lett.,2008,101:047401. [36] LIU M Z,LEE T W,GRAY S K,et al.. Excitation of dark plasmons in metal nanoparticles by a localized emitter[J]. Phys. Rev. Lett.,2009,102:107401. [37] KOH A L,BAO K,KHAN I,et al.. Electron energy-loss spectroscopy(EELS) of surface plasmons in single silver nanoparticles and dimers:influence of beam damage and mapping of dark modes[J]. ACS Nano,2009,3:3015-3022. [38] CHU M W,MYROSHNYCHENKO V,CHEN C H,et al..Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam[J]. Nano Lett.,2009,9(1):399-404. [39] KLIMOV V,GUO G Y. Bright and dark plasmon modes in three nanocylinder cluster[J]. J. Phys. Chem. C,2010,114(51):22398-22405. [40] DONG Z G,LIU H,LI T,et al.. Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars[J]. Opt. Express,2010,18:18229-18234. [41] BIRIS C G,PANOIU N C. Excitation of dark plasmonic cavity modes via nonlinearly induced dipoles:applications to near-infrared plasmonic sensing[J]. Nanotechnology,2011,22:235502. [42] FEDOTOV V A,ROSE M,PROSVIRNIN S L,et al.. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry[J]. Phys. Rev. Lett.,2007,99:147401. [43] 杨欢,李飞,罗先刚,等. 基于复合纳米结构的局域表面等离子体光学传感器[J]. 光学与光电技术,2010,8(2):80-83. YANG H,LI F,LUO X G,et al.. Localized surface plasmomic biosensor based on composite nanostructures[J]. Optics & Optoelectronic Technology,2010,8(2):80-83.(in Chinese) [44] NOGINOV M A,ZHU G,BELGRAVE A M,et al.. Demonstration of a spaser-based nanolaser[J]. Nature,2009,460:1110-1112. [45] LAWANDY N M. Localized surface plasmon singularities in amplifying media[J]. Appl. Phys. Lett.,2004,85:5040. [46] LAWANDY N M. Interactions of charged particles on surfaces[J]. Appl. Phys. Lett.,2009,95:234101. [47] GHANNAM T. Dipole nano-laser: the effect of an external electric field[J]. J. Phys. B:At. Mol. Opt. Phys.,2010,43:155505-155510. [48] NOGINOV M A,ZHU G,BAHOURA M,et al.. Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium[J]. Opt. Lett.,2006,31:3022-3024. [49] NOGINOV M A,ZHU G,BAHOURA M,et al.. The effect of gain and absorption on surface plasmons in metal nanoparticles[J]. Appl. Phys. B,2007,86:455-460. [50] OULTON R F,SORGER V J,ZENTGRAF T,et al.. Plasmon lasers at deep subwavelength scale[J]. Nature,2009,461:629-632. [51] OULTON R F,SORGER V J,GENOV D A,et al.. A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation[J]. Nature Photonics,2008,2:495-500. [52] LIN ZH. Modal properties of hybrid plasmonic waveguides for nanolaser applications[J]. IEEE Photonics Technol. Lett.,2010,22(8):535-537. [53] HILL M T,OEI Y S,SMALBRUGGE B,et al.. Lasing in metallic-coated nanocavities[J]. Nature Photonics,2007,1:589-594. [54] NEZHAD M P,SIMIC A,BONDAENKO O,et al.. Room-temperature subwavelength metallo-dielectric lasers[J]. Nature Photonics,2010,4:395-399. [55] KOLLER D M,HOHENAU A,DITLBACHER H,et al.. Organic plasmon-emitting diode[J]. Nature Photonics,2008,2:684-687. [56] WALTERS R J,LOON R V A VAN,BRUNETS I,et al.. A silicon-based electrical source of surface plasmon polaritons[J]. Nature Mater,2009,9:21-25. [57] WALTHER C,SCALARI G,AMANTI M I,et al.. Microcavity laser oscillating in a circuit-based resonator[J]. Science,2010,327(5972):1495-1497. [58] HILL M T,MARELL M,LEONG E S P,et al.. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides[J]. Opt.Express,2009,17(13):11107-11112. [59] AKAHANE Y,ASANO T,SONG B S,et al.. High-Q photonic nanocavity in a two-dimensional photonic crystal[J]. Nature,2003,425:994. [60] SANVITTO D, DARAEI A, TAHRAOUI A,et al.. Observation of ultrahigh quality factor in a semiconductor microcavity[J]. Appl. Phys. Lett.,2005,86:191109. [61] MA R M,RUPERT F,OULTON R F,et al.. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection[J]. Nature Materials,2010,10:110-113. [62] ARAKAWA E T,WILLIAMS M W,HAMM R N,et al.. Effect of damping on surface plasmon dispersion[J]. Phys. Rev. Lett.,1973,3:1127-1129. [63] OKAMOTO T,H'DHILI F,KAWATA S. Towards plasmonic band gap laser[J]. Appl. Phys. Lett.,2004,85:3968. [64] WINTER G,WEDGE S,BARNES W L. Can lasing at visible wavelengths be achieved using the low-loss long-range surface plasmon-polariton mode?[J]. New J. Phys.,2006,8:125. [65] ALAM M Z,MEIER J,AITCHISON J S,et al.. Gain assisted surface plasmon polariton in quantum wells structures[J]. Opt. Express,2007,15:176-182. [66] de LEON I,BERINI P P. Theory of surface plasmon-polariton amplification in planar structures incorporating dipolar gain media[J]. Phys. Rev. B,2008,78:161401. [67] GENOV D A,AMBATI M,ZHANG X. Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach[J]. Phys. Rev. B,2008,77:115425.
  • 加载中
计量
  • 文章访问数:  3879
  • HTML全文浏览量:  472
  • PDF下载量:  1271
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-12
  • 修回日期:  2012-08-13
  • 刊出日期:  2012-10-10

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!